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Abstract—In this paper, we define the online localized
resource allocation problem, especially relevant for modeling
transportation applications. This model takes into account
simultaneously the dynamic locations of the resources and
the consumers, together with their online nondeterministic
appearance. We instantiate the model with the urban parking
management problem, and propose a multiagent system to solve
it. The solution is based on a community of drivers who share
their knowledge about available parking spots.

I. INTRODUCTION

The problem of resource allocation is an important re-

search field with several application domains. This kind of

problem is faced by many applications such as telecommuni-

cations [1][2], manufacturing [3] and epidemic treatment [4].

A central parameter in the study of resource allocation

problems is related to the nature of resources (discrete or

not, reusable or not) and/or to the chosen allocation system.

In [5] for instance, the authors consider resource allocation

in a static environment (i.e. the number of the resources and

the number of the consumers do not change).

In this paper, we are interested in the problem of resource

allocation that takes into account both its temporal and

spatial dimensions. Problems of this nature are faced by

several transportation applications, which solving generally

requires the simultaneous consideration of time and space.

Application examples are the search of charging stations for

electric cars [6], the parking spot management [7] and the

sharing of vehicles (taxi, car, bike, etc.) [8]. On the one side,

the time dimension has to be explicitly represented when the

information about resources and/or consumers is not known

at the beginning of the allocation. This kind of problem is

generally modeled as an online resource allocation (ORA)

problem [9]. On the other side, the space dimension has to

be explicitly modeled when resources and consumers are

situated and when the distance between them conditions

the allocation. This kind of problem can be modeled as a

localized resource allocation (LRA) problem [10].

The time dimension is considered in several applications

of resource allocation. The satellite exploitation [11] is an

example where image requests come over time. The ORA

must take into account the satellite orientation and has to be

efficient and equitable: the satellite should not be underex-

ploited and each member should get a return on investments

that is proportional to its financial contribution. Real-time

systems also take into account the time in the resource

allocation. In [12] for instance, an architecture is developed

supporting dynamic resource management. The objectives

are to optimize and reconfigure system resources at runtime

and to adapt to changing mission needs and resource status.

Resource allocation in wireless cellular networks (e.g. in [1])

tackles the problem of wireless channels allocation in an

online fashion because of the time-varying nature of the

resources.

The space dimension is also considered in several appli-

cations. The domain that faces frequently this kind of allo-

cation problem is telecommunication. In cellular networks

for instance, one problem is to allocate the frequency to

localized access points according to traffic demands [10]. In

smart grids (e.g. [13]), the allocation problems are also gen-

erally LRA problems, since the objective of the allocation

is to reduce the transactions price which depends strongly

on the distance between resources and consumers.

Since we are particularly interested in transportation ap-

plications, we present in this paper a generic model for both

ORA and LRA problems called OLRA (for Online Localized

Resource Allocation) problem. Few works focus on this

variant of the problem, because one of the dimensions (time

or space) is often implicitly taken into account. For instance,

the space dimension is implicit if the modeling considers

the time to reach the resource. This partial modeling do not

enable to take into consideration the constraint related to the

space (respectively to the time). For instance, if the space

is not modeled explicitly, we cannot express the fact that

the consumer knowledge about a resource depends on the

distance between them. This was the choice of the authors

in [14], where they model the problem of resource allocation

related to fleet management. They reduce the problem to

a dynamic allocation problem by decomposing it into sub-

problems since the resource requests are known in well-

determined time and area. Our contribution is to introduce

an explicit representation of the physical environment in the

problem. This allows us to consider that consumers do not

have complete knowledge about resources and their states.
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The resources might also be volatile because they are in a

shared space and can therefore be taken by any consumer.

Finally, the resources can be uncontrolled because they are

created and released in a nondeterministic way.

In this paper, we define the OLRA and we illustrate it with

the application of urban parking management, for which we

propose an agent-based approach.

This article is organized as follows. In section II we define

the OLRA problem. Section III presents the application of

urban parking, our multiagent solution and our experimental

results. Finally, section IV concludes this paper.

II. PROBLEM DEFINITION

A. Description

Consider a set of resources and a set of consumers in

different states. Both resources and consumers appear non-

deterministically and can subsequently change their position

at any moment. Each resource has a state and a set of

properties. An allocation changes the state of the resource

but its properties remain the same [14].

The problem that is considered in this paper involves

the assignment of this set of resources to the consumers

whose requests are not known in advance. Indeed, the offers

(the resources) and the demands (the allocation requests)

are situated in time. On the one side, a consumer starts

looking for a resource at nondeterministic moments. These

moments are not predefined and are discovered during

the allocation process. On the other side, the resources

are available starting from unknown moments and remain

available during an unknown time window. The compliance

of the resource with the consumer needs is conditioned

with the spatial and temporal situation of the consumer

and the resource. Like all resource allocation problems,

the compliance of the resource with the consumer is also

conditioned by his preferences, which concern the current

state and the properties of the resource. The local objective

of the consumers is to maximize their own utility while

the global objective of the allocation system in this kind of

problems is generally to minimize the total traveled distance

and total travel time needed to access resources by the

consumers.

B. Problem formulation

In this section, we formulate the Online Localized Re-

source Allocation (OLRA) problem and we define its various

components. That allows us notably to describe different

variants and use cases for the general problem. An OLRA

is a tuple:

OLRA = 〈R, C, G,D〉
where:

• R = {r} is the set of resources.

• C = {c} is the set of consumers.

• G = 〈V,E〉 is a directed graph, with V the set of nodes

indexed from 1 to N , and E = {eij |i, j ∈ V and i �= j}
the set of edges.

• D = {dij |i, j ∈ V and i �= j, dij ∈ R+}, dij is the

distance between two successive nodes i and j.

Each node of the network can contain one or more resources

of R whose properties may differ. Resources can represent,

for instance, vehicle seats, parking spots, places to recharge

electric cars, etc. The distances between edges are fixed,

while the travel times may vary according to the dynamics

of the graph. If the graph represents a transportation network,

the travel times would be impacted by traffic status and

congestion.

The way the resources are discovered depends on the

application but this is generally done in a progressive way,

i.e. at the start of the allocation, we don’t have the complete

list of resources. They can for example be discovered

thanks to sensors, from a database of resource providers,

or from information collected about consumers. Consumers

also appear and disappear in a non-deterministic way and

can consume resources according to their preferences. The

availability of a consumer or a resource at a certain moment

is caught by the following function:

availability : (R∪ C)× T → {0, 1}
where T is the time horizon. This function returns 0 if the

resource or the consumer is not yet localized and is equal

to 1 until they disappear of the system.

The two following sets describe the different characteris-

tics of the resources:

• P = {p1, p2, ..., pm}: It represents all the possible

properties of resources.

• Δp = {d1, d2, ..., dn}: I contains the description do-

mains of these properties.

A property pi ∈ P : R → dj is a function whose

description domain dj ∈ Δp can be quantitative, qualitative

or a finite set of data. Each resource is characterized by a

set of properties whose corresponding values are given by

this function:

� : R → (P ×Δp)
q

where q is the number of properties that are defined for

the resource. The set R is by default heterogeneous, i.e.

resources may be of different nature and be represented

by completely different properties. If R is homogeneous,

resources are defined by the same q properties.

The following functions specify the dynamics of the

allocation status. The three functions define the dynamic

costs and the dynamic positions of resources and consumers.

• τ : V × V × T → R+, τ(i, j, t) returns the travel time

between i and j at time t. T is the time horizon.

• ρr : R × T → V , ρr(r, t) returns the node where the

resource r is located at t.
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• ρc : C × T → V , ρc(c, t) returns the node where the

consumer c is located at t.

A resource or a consumer on the edge eij is considered

to be positioned on i until he reaches j.

The interest of a consumer for a resource varies over time,

either following an internal process or following his context.

This context may include his current position or his final

destination. The usefulness of a resource to a consumer is

given by the following utility function:

μ : C ×R× T → R

μ(c, r, t) returns the utility of the resource r for the consumer

c at time t. However, by construction, the consumption of a

resource by a consumer is conditioned by their collocation.

This can be verified with the indicator function as follows:

1F : F → {0, 1}
where F = {(c, r, t) ∈ C ×R× T |ρc(c, t) = ρr(r, t)}.

1F (c, r, t) returns 1 if the consumer c has the same

position than the resource c at time t and 0 otherwise.

Therefore, F defines the set of space-time collocations of

resources and consumers.

The function γ specifies when a customer actually con-

sumes a resource:

γ : C ×R× T → {0, 1}
γ(c, r, t) returns 1 if a consumer c takes the resource r at t
and 0 if not. Since a consumer cannot take a resource if they

are not at the same position at the same time, then that means

that γ(c, r, t) = 1 cannot be valid unless 1F (c, r, t) = 1.

OLRA is not constrained to specific resource properties.

It can model problems where the resources are shareable or

not, and where consumers can consume several resources at

the same time or not. The considered variant of the problem

is specified by two parameters k and l. The considered

problem has to comply with the two following constraints,

which depend on k and l.

∑

c∈C
γ(c, r, t) ≤ k, ∀r ∈ R, ∀t ∈ T (1)

∑

r∈R
γ(c, r, t) ≤ l, ∀c ∈ C, ∀t ∈ T (2)

The constraint (1) specifies that the resources can be

shareable and be taken simultaneously by at most k con-

sumers (k ∈ N). If the resources are not shareable, k is equal

to 1. If several resources are collocated with a consumer,

the problem definition may allow him to consume them

simultaneously (constraint (2)). The number of resources

that can be taken simultaneously is a parameter l ∈ N.

Again, if this is not allowed, l is set to 1. The values of k
and l are model parameters and enable to take into account

different problem variants and therefore different application

types.

The quality of a resource allocation in OLRA is generally

related to the distance and the travel time of consumers.

Their cumulative positions throughout the allocation process

are specified with the three following functions.

π : C → ({1, . . . , N} × T )n, n ∈ N

π defines the path of a consumer. Applied to a consumer

c, π returns the nodes that the consumer has visited while

moving towards a resource, together with the times corre-

sponding to his visits. π(c)[i, 1] allows to access the index

of the ith visited node, while π(c)[i, 2] allows to access the

corresponding visit time.

For instance, π(c1)[2, 1] = 10 indicates that the second

node visited by consumer c1 is v10, while π(c1)[2, 2] = t3
indicates that this visit occurs at time t3.

δ(c) =
∑

i=0...|π(c)|−1

dπ(c)[i,1],π(c)[i+1,1]

δ determines the total distance traveled by c. The term

dπ(c)[i,1],π(c)[i+1,1] represents an element dxy of the D ma-

trix of distances, where x = π(c)[i, 1] and y = π(c)[i+1, 1]
are, respectively, the ith and the (i + 1)th node indices

returned by π(c). |π(c)| gives the total number of nodes

visited by c.
For instance, if π(c1) = [(5, t1), (10, t3)], i.e. consumer

c1 visits node v5 at time t1 then node v10 at time t3; if the

distance d5,10 = 6, then δ(c1) = 6.

ϕ(c) = π(c)[|π(c)|, 2]− π(c)[1, 2]

ϕ gives the total travel time of a consumer c. The

expressions π(c)[|π(c)|, 2] and π(c)[1, 2] are the instants of

visits, respectively, of the last node and the first node visited

by c.
With the same above example with π(c1) =

[(5, t1), (10, t3)], ϕ(c) = t3 − t1.

The objective of the study of OLRA is generally to

minimize the time and/or the distance spent in the search

of resources. This social objective can be expressed as:

min
∑

c∈C
[αδ(c) + βϕ(c)]

where α and β are positive numbers weighting the relative

importance of time and space in the specific problem that is

considered.

Besides, every consumer has the local objective of maxi-

mizing his own satisfaction by obtaining the resources that

best satisfy his preferences and maximize his utility. This

personal objective is defined as follow:

max
∑

r∈R,t∈T
[μ(c, r, t)× γ(c, r, t)]
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These two objective functions are used to compare the

effectiveness of solutions proposed to solve a particular

OLRA problem. A system might behave well w.r.t the local

objectives of the consumers while the social objective is

not optimized. Or it may exhibit good results for the social

objective, while the individual objectives are sub-optimal.

As usual in this kind of problems, there is a compromise

between these two objectives that the proposed solutions to

this problem have to find.

III. APPLICATION: URBAN PARKING SPOTS

MANAGEMENT

A. Urban parking spot search problem

Many applications can be modeled as an OLRA, es-

pecially in the transportation domain, such as fleet man-

agement [14], parking spot management [15], etc. In this

paper, we present an application of urban parking manage-

ment which is one of the important issues in the domain

of transportation. Indeed, an important part of carbonic

gas emissions is due to the traffic generated by drivers

looking for parking spots. In fact, we can consider urban

parking spot search problem as an OLRA where parking

spots represent the localized resources and drivers are the

resources consumers. The issue here is to adapt to a complex

problem necessitating the consideration of a dynamic and

open environment. A solution to this problem has to use

minimal information on a shared, volatile and uncontrollable

resource. It has also to be able to work without initial

information and ensure to its consumers to have a resource

availability information that is the most up-to-date possible.

B. Model instantiation

In this application, the set of resourcesR is homogeneous,

and composed of the parking spots. At the start of execution,

R might be equal to ∅, and is enriched by the discovery

of parking spots by drivers. The set of consumers C is

composed of the drivers who belong to a community and

desire to use the service. There are drivers outside the

community who have the same rights to consume the spots.

The drivers in the community inform the system when they

take or release a parking spot while the others do not.

G is the transport network of the considered town or

region. The nodes of the network represent either a crossroad

or a parking spot on an edge. The time horizon T is the

considered timeframe for the execution, typically 24 hours.

The availability function defines when a spot is discovered

or when a driver joins the system.

The possible properties of a parking spot are its size

in centimeters (dsize = R+), the rating of the neighbor-

hood (drating = N) and its safety (dsafety = {0, 1}).
For a parking spot r1, �(r1) can then be equal to

{(size, 200), (rating, 9), (safety, 1)}. We could think of

much more properties for the spots.

The drivers utility μ can give a rating to a resource that

combines conditions on the resource and on his context. For

instance, a driver can be interested in the only safe resources,

which size is longer than 2 meters and that are not further

from his final destination than 500 meters.

In this application, the spots can be taken by anyone, but

not more than one driver can take a spot. As a consequence,

the parameter k is equal to 1. In addition, not more than one

spot can be collocated with a driver, and one driver cannot

take more than one spot at the same time. The parameter l
is then also equal to 1.

In the following, we propose a solution to the problem

of urban parking. The solution is based on a distributed

architecture. In section III-D, we compare this proposal

with an approach that centralizes the processing, w.r.t the

objective functions defined in the model.

C. Agent-based solving

To solve this problem, we propose an agent-based trans-

port information system that helps to find parking spots in an

urban agglomeration. This approach is particularly relevant

for the management of parking spots, since the problem

is to take into account human behaviors that interact in a

complex, dynamic and open environment. Our agent-based

approach is totally decentralized and we employ an inter-

vehicular communication (V2V) to allow vehicles to receive

and broadcast information to the other vehicles of the same

community. The choice of a distributed approach allows us

a.o. to minimize the infrastructure to implement this solution

and to limit investment.

1) Agents Model: The proposed system for the search

of spots in an urban area is modeled by a type of agent

designated by assistant agent who represent a driver. The

internal architecture of the assistant agent is composed

of three modules: a Communication module, an Itinerary
module and a Decision module. The first module enables

the agent to communicate with his neighbors, which have

to belong to the community as well. This communication

is based on messages and allows to exchange information

about the availability of parking spots. The itinerary module

ensures the calculation of the route to a particular parking

spot starting from the driver’s current position, but also

monitors his movement. Finally, the decision module takes

care of the decision making. This module proposes a parking

spot to the driver. The latter must meet the criteria specified

by the driver, which may concern for instance its distance,

the time since its release, or the safety of its location. In other

words, the decision module implements the utility function

μ defined in the model.

In addition to proposing parking spots, the decision mod-

ule manages a memory containing information related to the

spots. This knowledge evolves over time with information

acquired through the exchange of messages with different
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assistant agents and to the perception of the agent. This

memory is composed of two disjoint lists.

• FS list (for Free Spots) contains a set of pairs {<
spot, time >}, each pair refers to a specific spot: its

geographic position and the moment since which it was

released.

• OS List (for Occupied Spots) contains the spots that

were in FS but which turned out to be occupied with

the moment since which this information was known.

Both lists are exchanged by the assistant agents and are

updated gradually by the knowledge of each one. The

combined use of the two lists provides a dynamic update

of the system information. Indeed, one consequence of the

volatility of information regarding the availability of spots

is illustrated when an agent chooses a spot on its FS list

- supposed to be free - but, once there, it finds it occupied.

In this case, the FS lists contain incorrect information about

this spot. That’s why, the OS list enables agents to filter

the information received and to have the best information

possible.

To allow an update of the lists without specific infor-

mation, the decision module of each assistant agent filters

outdated information after a time θ, i.e. the spots in FS and

OS with an associated time that is inferior to the current

time minus θ. This parameter takes into account the network

activity. Thus, a low value reflects a high volatility as the

case may be in rush hours in downtown, while a high

value keeps a longer sharing of information and reflects,

for instance, the lower volatility in a residential area.

The density of the network can generate a large number

of messages. However, the communications take place very

locally between vehicles and the total number of messages

by agent is less important than in a centralized architecture.

In the experiments section, we measure the average number

of exchanged messages per agent in our system.

FSA = {. . . 〈spi1 , ti1〉, . . .}
FSB = {. . . 〈spi2 , ti2〉, . . .}
OSA = {. . . 〈spi3 , ti3〉, . . .}
OSB = {. . . 〈spi4 , ti4〉, . . .}
for all 〈spi, ti〉 ∈ FSB do

if (spi ∈ OSA) then
if (tBi >= tAk ) then

delete(spi, OSA)

add( spi, t
B
i , FSA)

end if
else

if (spi ∈ FSA) then
if (tAk < tBi ) then

update((spi, t
B
i , FSA)

end if
else

add( spi, t
B
i , FSA)

end if

end if
end for
for all 〈spi, ti〉 ∈ OSB do

if (spi ∈ OSA) then
if (tAj < tBi ) then

update((spi, t
B
i , OSA)

end if
else

if (spi ∈ FSA) then
if (tAj < tBi ) then

delete(spi, FSA)

add( spi, t
B
i , OSA)

end if
end if

else
add( spi, t

B
i , OSA)

end if
end for

2) ”Coopetition” model: To manage parking in an urban

environment, our MAS is based on the coopetition [16]

of agents to share information regarding the availability

of spots. Indeed, despite their competition, the agents of

the community cooperate to achieve their own aim and

that of their community. This coopetition uses two types

of broadcast. The first type is related to their cooperative

behavior and concerns all the information that the agent has

when not looking for a parking spot. The second type of

broadcast is the consequence of their competitive behavior

and is illustrated by the fact that an agent only broadcasts

the information that does not interest him.

The messages exchanged between assistant agents from

the same community include their lists (FS and OS) which

contain, respectively, the spots that are possibly free and

those probably taken. The update of the lists is illustrated in

Figure 1. The communication module of the assistant agent

extracts the lists FSB and OSB from each received message

and forwards it to the decision module. This corresponds

respectively to edges (1) and (2) in Figure 1. The decision

module updates both lists by aggregating the received FSB

and OSB lists with its own FSA and OSA lists.

The idea is to browse each received list (FSB and

OSB) and update the local lists (FSA and OSA) with the

date associated with the spots. If there are two conflicting

informations, then the newest one is kept, since the last

driver who has visited this spot has the information that

is more probably correct about its availability. This update

is made by using the algorithm below. After the update of

the two lists FSA and OSA, the decision module hand

them to the communication module, which is responsible

for the transmission of the information to neighbors in the

community. These steps are followed whether the driver is

looking for a spot or not.

When the driver dr is looking for a parking spot, he
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Figure 1. Assistant agent internal data flows

requests help from his embedded system. The decision

module of his assistant agent updates FS and OS with the

received messages, then sends FS to the itinerary module.

This corresponds to the edge (3) in Figure 1. The itinerary

module computes the routes for each spot on this list and

forwards the result back to the decision module. Based on

the utility function μ, the decision module proposes a spot

that best meets the needs of the driver. In order to assess our

proposal with an objective decision criteria, we have used

an utility function that takes into account the time to reach

the resources:

μ(c, r, t) = 1
τ(ρ(r,t),ρ(c,t),t)

Then, the decision modules deletes the information cor-

responding to the proposed spot from FS. Finally, it sends

the rest of the list together with OS to the communication

module which takes care of their distribution to the neigh-

bors. The removal of the information about this spot reduces

its spread within the community. Thus, the assistant agent

increases the driver’s chances of finding the spot free. In

addition, during the movement of the driver to the chosen

spot, the assistant agent can suggest an alternative spot that

would better meet his needs.

D. Experiments

1) Configuration: The objective of the community man-

agement of parking spots is to allow the sharing of infor-

mation about available spots in a decentralized manner. For

the validation, it is necessary to compare the effectiveness of

the process of finding spots of drivers who use the system

with drivers who don’t. We have chosen the proximity to

the current position as the decision criterion to choose a

spot. This test has the advantage not to rely on qualitative

information such as the safety of the location and limits

the effects of bias. Besides, the use of an absolute temporal

criterion solely like choosing the last released spot would

have the consequence to direct all searching agents to the

same spots.

The parameters that are selected for the simulation are the

following. First, the number of agents within and outside the

community. This parameter impacts the controllability of the

spots. The more we have drivers outside the community,

the more unexpected “disappearance” of spots we might

encounter. Then, the time spent by an agent on a spot (OT,

for occupation time). The more drivers spend time occupying

a spot, the less spots are available for the other drivers.

The third parameter is the lifetime of the information on

the availability of a spot (θ). A θ that is too big would

lead to the exchange of obsolete information and therefore

unnecessarily increase the bandwidth use. A θ that is too

small would lead to the deletion of still relevant information

about spots and make drivers loose parking opportunities.

To evaluate the different scenarios, we choose the two

following criteria. The first is the average time spent to find

a spot per agent (ST). This criterion verifies that a driver

earns to use the system rather than finding a spot on his

own, and quantifies this gain. In other words, we set the

coefficient α in the objective function of OLRA to 0 and

the value of β to 1. The second criterion is the success rate

(SR, or effective use rate of the system) by the agents of

the community. It represents the ratio between the number

of drivers in the community who have found a parking spot

thanks to the system by the total number of drivers in the

community. All time variables are expressed in number of

execution cycles.

We have used MadKit [17] as a simulation platform. For

each simulation we have performed 15 executions, each one

running on 50 cycles. Results given in the next section

contain the means of these different executions. The network

of our simulation contains 17 edges and it takes 10 cycles to

traverse an edge. At the start of execution, we set the agents

randomly on the network in which we set a fixed number

of spots in each edge. Some of them are stopped and the

others are traveling. Each edge is bidirectional, and an agent

can turn around if needed.

2) Results: To demonstrate the effectiveness and utility of

our proposal, we have conducted many series of simulations.

In the first series, we vary the number of agents in the

community (NbA). This allows us to verify the impact of

the system use on search time. In the second series, we

study the impact of the rareness of spots on the success rate

(SR). Finally, we compare the average number of exchanged

messages per agent in our system and in a centralized

approach.

In the graph shown in Figure 2, we represent the average

time spent to find a spot for the agents in and outside the

community. The total number of agents in the simulation is

300, i.e.the number of agents outside the community is the

complement to 300 of those in the community. The abscissa

axis gives the number of agents that are taken into account.

For instance, the value 100 means that 100 agents into the

community spend on average 13.62 cycles to find a free spot

whereas 100 agents outside community spend 20.57 cycles

on average.
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Figure 2. Profit of the system

We can notice that, the more agents in the community

we have, the less time they spend searching spots. This

result is due to the fact that spots availability information

is better propagated in the community, when the number

of its members is important. Therefore, vehicles using the

system spend less time to find a parking spot. Moreover,

we can also note that the average time to find a spot (ST)

for an agent of the community is much lower than that of

an agent outside the community. The difference varies from

one to seven cycles when all agents are in the community.

For example, if there are 100 agents in the community, the

average ST is equal to 13.62 cycles, whereas the average

ST of an agent outside the community (i.e. 200 agents) is

19.48 cycles. According to these results, we can conclude

that our proposal is useful and effective, especially when the

community size is large enough.

In the next series of simulations, we fixed the number of

spots in the network and varied the occupation time of a spot

by a vehicle (OT). This way, we increase the spots rareness

since vehicles monopolize spots more time and leaves less

possibilities for others to find a free spot. The Figure 3

illustrates the variation of the success rate according to the

rareness of spots. For example the SR is 33.82 % when

the OT is equal to 2 cycles. However this rate increases to

39,85 % when OT is 4 cycles. Then the SR stagnates since

the number of spots becomes really limited. Indeed, when a

driver perceives several free spots, he does not really need

help to find one. However, if they are rare the proposed

system turns out to be very useful. These results show that

the less spots we have, the more the system is useful, until

a certain threshold where the number of resources becomes

too limited.

In Figure 4, we report the number of messages handled by

each agent in each cycle in our proposal, which we compare

with a centralized solution. In the centralized approach,

when the driver leaves a spot, two messages are exchanged

with a central agent for each parking spot search (request

and response) and a message informing that the chosen spot

is taken. This agent is unique, which limits the total number

Figure 3. Impact of spot rareness

of messages but, he forms a communication bottleneck. Our

proposal is based on local communication. The number of

messages exchanged depends on the number of vehicles in

the community with the same communication range and

does not depend on the total number of the community

members. Then, the number of messages may differ from

one area to another in the network, depending on its activity.

So we have not to compare the total number of messages

sent in the two approaches.

Figure 4. Comparison of the number of messages per agent

IV. CONCLUSION

In this paper, we propose a modeling for the resources

allocation problem taking into account simultaneously the

location and the moment when the resources are available.

Our modeling is well adapted to the transportation domain

where many applications are characterized by the difficulty

to take into account their space-time dimension. Our model-

ing is able to take into account several kinds of constraints:

space, the resources or consumers are static or not; time, the

availability of the resources and needs of consumers change

according to time; space-time, the resource and consumer

have to be at the same location.
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We have used our modeling to specify the management

of parking spots in an urban area and proposed a multiagent

solution. The system is based on a community of drivers

that interact to keep up-to-date information regarding the

availability of parking spots. Communication between agents

is supported by an inter-vehicular network with a radius

of restricted broadcast, ensuring the consideration of local

information. Our system works without prior information

on the places and no central storage of information. We

have focused our validation on the average search time and

showed a decrease regardless of the density of the vehicular

network.

We are considering different perspectives to this work.

Among them, we want to improve the decision function of

the agents in order to take into account other criteria than

the time and space and to evaluate how the aggregation of

their preference impacts the quality of the solutions.
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