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ABSTRACT
In this paper, we present a multiagent model for the Dy-
namic Vehicle Routing Problem with Time Windows. The
system adapts insertion methods to a distributed configu-
ration. The model has two declination: one spatial and
one spatiotemporal. The two organization models that we
propose rely on two different measures of what the inser-
tion of the current customer would cost to a given vehicle.
Our approach provides promising results and provides a new
method to tackle the problem, in which the solving process
is future-centered. The models developed in this paper of-
fer two solutions with different advantages, which allow a
decider to choose one of them following the operational con-
figuration of her real problem. In the case where the trans-
portation operator has a limited vehicles fleet, and where
the mobilization of a new vehicle is costly, its system should
be grounded on the spatiotemporal model, which mobilizes
less vehicles. In contrast, if the costs in term of traveled
distance are more critical, it is more interesting to ground
its system on the spatial model.
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1. INTRODUCTION
Several operational distribution problems, such as the de-

liveries of goods to stores, the routing of school buses, the
distribution of newspapers and mail etc. are instantiations
of NP-Hard theoretical problems called the Vehicle Routing
Problems (VRP). In its original version, a VRP is a multi-
vehicle Traveling Salesman Problem: there exists a certain
number of nodes to be visited once by a limited number of
vehicles. The objective is to find a set of vehicles’ routes that
minimizes the total distance traveled. Besides their practi-
cal usefulness, the VRP and its extensions are challenging
optimization problems with an academic stimulating issues.
One of the most widely studied variant of the problem is the
time (and capacity) constrained version: the Vehicle Rout-
ing Problem with Time Windows (VRPTW henceforth), in
which the requests to be handled are not simply nodes, but
customers. For each customer, the following information
are informed: the concerned node, two temporal bounds be-
tween which he desires to be visited and a quantity (number

of goods to receive, number of persons to transport, etc.).
Each vehicle has a limited capacity, which should not be ex-
ceeded by the quantities that it transports. The addition of
time windows increases the complexity of the problem, since
it narrows the space of valid solutions. The VRPTW can be
formally stated as follows.

Let G = (V,E) be a graph with node set V = N ∪ 0
and edge set E = (ij)|i ∈ V, j ∈ V, i 6= j, N = 1, 2..., n is
the customer set with node 0 is the depot. With each node
i ∈ V is associated a customer demand qi(q0 = 0), a service
time si(s0 = 0), and a hard service-time window [ei, li] i.e.
a vehicle must be at i before li but can be at i before ei and
must wait until the service starts. For every edge (i, j) ∈ A,
a distance dij ≥ 0 and a travel time tij ≥ 0 are given.
Moreover, the fleet of vehicles is homogeneous and every
vehicle is initially located and end its route at a central
depot. Each customer demand is assumed to be less than
the vehicle capacity Cap. The objective is to find an optimal
set of routes (with the minimal cost) such that:

1. All routes start and end at the depot;

2. each customer in N is visited exactly once within its
time window;

3. the total of customer demands for each route cannot
exceed the vehicle capacity Cap.

The performance criteria are in general (following this or-
der):

1. The number of vehicles used,

2. the total distance traveled,

3. the total waiting time.

Since the problem is NP-hard, exact approaches are only
of theoretical interest, and heuristics are performed in order
to find good solutions, not necessarily optimal, within rea-
sonable computational times. The VRP and the VRPTW
can be divided into two sets [18]: static problems and dy-
namic problems. The distinction between these two cate-
gories relies traditionally on the knowledge (static problem)
or the ignorance (dynamic problem) before the start of the
solving process of all the customers that have to be visited.
The operational problems are rarely fully static and we can
reasonably say that today a static system cannot meet the

87



mobility needs of the users. Indeed, operational vehicle rout-
ing problems are rarely fully static. In operational settings,
and even if the whole number of customers to be served is
known, there is still some elements that makes the prob-
lem dynamic. These elements include breakdowns, delays,
noshows, etc. It is thus always useful to consider a problem
that is not fully static.

We rely on the multiagent paradigm for solving the dy-
namic VRPTW. An agent is a software system, that is sit-
uated in some environment and that is able to apply au-
tonomous actions to satisfy its goals [27], and a MAS is a net-
work of loosely coupled agents, which interact to solve prob-
lems that overpass the capacities or the knowledges of each
one [25]. A multiagent modeling of the dynamic VRPTW
is relevant for the following reasons. First, since it’s a hard
problem, choosing a design allowing for the distribution of
computation can be a solution to propose short answer times
to customers requests. Second, with the technological devel-
opments, it is reasonable to consider vehicles with onboard
calculation capabilities. In this context, the problem is, de
facto, distributed and necessitates an adapted modeling to
take profit of the onboard equipments of the vehicles. Fi-
nally, the consideration of a multiagent point of view allows
to envision new measures, new heuristics, not envisaged by
centralized approaches.

In this paper, we propose a distributed version of the “in-
sertion heuristics”. Insertion heuristics is a method which
consists in inserting the customers following their appear-
ance order in the routes of the vehicles. The vehicle chosen
to insert the considered customer is the one that has to make
the minimal detour to visit him. Several multiagent works
in the literature have been proposed to distribute insertion
heuristics, but very few propose new measures of the in-
sertion cost of a customer in the route of a vehicle, as an
alternative to the traditional measure of its incurred detour.
In the present work, we do propose two new measures, in
the context of two new self-organization models. They are
based on a space and on a space-time representation of the
Vehicle agents’ action zones. The objective is to allow the
MAS to self-adapt exhibiting an equilibrated distribution of
his Vehicle agents, and to decrease this way the number of
vehicles mobilized to serve the customers.

The remainder of this paper is structured as follows. In
section 2, we discuss previous proposals for the dynamic
VRPTW w.r.t our approach. In the sections 3 and 4, we
detail the two models and the use of new measures for the
insertion decisions of the vehicles.We report on our exper-
imental results in Section 6 and then Conclude with a few
remarks.

2. RELATED WORK
As we said in the introduction, exact approaches cannot

meet operational settings, and upon the relatively small set
of benchmarking problems of [24] - 56 problems of 100 Eu-
clidean customers1 each, only 45 have a known optimal so-
lution up until today [21]. However, interested readers of
optimization approaches can refer to, e.g. [16] for a survey.

In fact, most of the proposed solution methods are heuris-
tic or metaheuristic methods, provide good results in non-

1Euclidean customers have cartesian coordinates, and the
distance and the le travel times between each pair of cus-
tomers are calculated following the Euclidean metric.

exponential times, and which have presented good results
with benchmark problems. For instance, large-neighborhood
local search [1, 22], iterative local search [15, 14], multi-start
local search [19], simulated annealing [2], evolutive strate-
gies [20, 11] and ant colonies [7]. These approaches present
the best performances with static problems (where the set of
transport requests is known a priori). For an extensive sur-
vey of the literature for the VRPTW approaches, the reader
is invited to refer to, e.g. [10, 3].

Generally speaking, most of the works dealing with the dy-
namic VRPTW are more or less direct adaptations of static
methods. For instance, the large-neighborhood local search
is adapted to a dynamic context in [8]. In [13], the authors
propose to adapt the genetic algorithms to deal with the
dynamic VRPTW. The proposed algorithm starts by cre-
ating a population of initial solutions and tries continually
to improve their quality. When a new customer reveals, he
is inserted in all current solutions in the position minimiz-
ing the additional cost. Upon the static methods, insertion
heuristics are the most widely adapted in a dynamic envi-
ronment (e.g. [6, 12, 4]). Insertion heuristics are, in their
original version, greedy algorithms, in the sense that the de-
cision to insert a given customer in the route of a vehicle
is irrevocable. They are also combined with meta-heuristics
to improve the quality of the solutions. In [30], the authors
propose an approach for the dynamic VRP, in which a cen-
tral solver made of reactors manage the events coming up
in the network. When a customer reveals, he is inserted in
the route of a vehicle as for insertion heuristics. After each
insertion, an optimization procedure is launched trying to
reduce the number of used vehicles and the total traveled
distance. The procedure is repeated until the current solu-
tion doesn’t get better anymore. The customers are handled
sequentially following a decreasing priority order, which is
function of their respective distance and the decreasing order
of their opening time windows.

The advantage of using insertion heuristics is that they
are intuitive and fast. However, when they are applied in
a dynamic context, their solving process is said to be my-
opic. Indeed, the system doesn’t know which customers will
appear once it has assigned the known customers to the ve-
hicles. And even if we could have an optimal assignment and
scheduling of the known customers, a new coming customer
could make the old assignment sub-optimal, which would -
in the worst case - necessitate a whole recomputation of all
the routes.

Most of the multiagent approaches for the dynamic VRPTW
are grounded, at least partially, on insertion heuristics. In [26]
and in [17], the authors propose a multiagent architecture
to solve a VRP and a multi-depot VRP for the first and
a dial-a-ride problem for the second. The principle is the
same: distribute an insertion heuristic, followed by a post-
optimization step. In [26], the customers are handled se-
quentially, broadcasted to all the vehicles, which in turn
propose insertion offers and the best proposal is retained
by the customer. In the second step, the vehicles exchange
customers to improve their solutions, each vehicle knowing
the other agents of the system. Since vehicles are running
in parallel, the authors envision to apply different heuris-
tics for each vehicle, without changing the architecture. In-
Time [17] is a system composed of Customer agents and
Vehicle agents. The Customer agent announces himself and
all the Vehicle agents calculate his insertion cost in their
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routes. Again, the Customer agent selects the cheapest of-
fer. The authors propose a distributed local search method
to improve the solutions. Indeed, they allow a customer to
ask stochastically to cancel his current assignment and to
de reannounce himself to the system, with the objective of
having a better deal with another vehicle. MARS [5] models
a cooperative scheduling in a maritime shipping company
in the form of a multiagent system. The solution to the
global scheduling problem emerges from the local decisions.
The system uses an extension of the Contract Net Protocol
(CNP) [23] and shows that it can be used for having good
initial solutions to complex problems of tasks assignment.
The MAS profits from an a priori structuring of the agents,
since each vehicle is associated with a particular society and
can handle the only customers of this society.

From a protocol and an architecture point of view, our sys-
tem sticks with the systems we have just described, since we
propose a distributed version of insertion heuristics. How-
ever, in these proposals, none have focused on the redefi-
nition of the insertion cost of a customer. The traditional
insertion cost of a customer in the route of a vehicle is based
on the incurred detour of the vehicle. We propose a new in-
sertion cost measure, focused on the space-time coverage of
the vehicles, which aims at counterbalancing the myopia of
the traditional measures, by privileging an insertion process
that is future-centered.

3. SPATIAL MODEL
The optimization of the conventional criteria of the VRPTW

(number of vehicles and total distance) leads to the appear-
ance of uncovered areas because of their low density. In fact,
the fact that we deal with a dynamic and nondeterministic
problem can lead to the appearance of two different but non
independent phenomena. The first is the concentration of
vehicles in some zones which are more attractive and may
lead to the second phenomena, which is the lack of service
elsewhere. The idea behind our self-organization models is
that when the positioning of vehicles is made such as to cover
as much territory as possible, the risk of customers whose
demand is unsatisfied, and the obligation to mobilize new
vehicles to serve them, decreases. The choices we make to
solve this problem is to use the multiagent paradigm coupled
with the insertion heuristics. In this context, we have only
one lever to change the system’s behavior, which is the way
in which the Vehicle agents calculate the insertion cost of a
customer. These calculation methods are two dimensional:
spatial and spatiotemporal. The two self-organization mod-
els that we propose have the objective of minimizing the
number of used vehicles, while keeping the use of a “pure”
insertion heuristics, i.e. without any further improvements
or post-optimization.

Our systems are composed of a dynamic set of agents
which interact to solve the dynamic VRPTW. A solution
consists of a series of vehicles routes, each route consists
of a sequence of customers with their associated visit time.
We define two categories of agents. Customer agents, which
represent users of the system (persons or goods) and Vehi-
cle agents. We assume that there is an access point to the
system (Web server, GUI, simulator, etc.) which verifies the
correctness of customers requests (existing node, valid time
windows, etc.) before to create the corresponding Customer
agents. Once created, a Customer agent announces itself
to all the Vehicle agents of the MAS. Each Vehicle agent

sends an offer to the Customer agent with a correspond-
ing insertion cost. The Customer agent chooses the Vehicle
agent with the lower cost. Finally, the chosen Vehicle agent
inserts the customer in its route.

Following the description above, the Customer agent chooses
between several Vehicle agents the one with the minimal
proposed insertion cost. The systems that are based on this
heuristic use generally the measure of Solomon [24] as an in-
sertion cost. This measure consists in inserting the customer
which has the minimal impact on the general cost of the ve-
hicle (which is generally function of the vehicle’s incurred
detour). This measure is simple and the most intuitive but
has a serious drawback, since inserting the current customer
might make lots of future customers’ insertions infeasible,
with the current number of vehicles. Its problem is that it
generates vehicles’ plans that are very constrained in time
and space, i.e. plans that offer a few possibilities of inser-
tion between each pair of adjacent planned customers. As a
consequence, the appearance of new customers might oblige
the system to create new vehicles to serve them. Through
the modeling of Vehicle agents’ action zones, we propose a
new way to compute the customer’s insertion cost in the
route of a vehicle, and a new choice criterion between vehi-
cles for the insertion of a given customer. We propose a new
method that allows the system to choose the Vehicle agent
“which decrease in the probability to participate in future
insertions is minimal”, to serve the new customer. The logic
of our models is different from the traditional models, which
focus on the increase of the traveled distance, neglecting the
impact of the current insertion decision on future insertion
possibilities.

The objective of the spatial self-organization model is to
allow the specialization of the system’s vehicle to zones while
maintaining an optimal coverage of the network (cf.Figure 1).
Thus, we define action zones on the transportation network,
to which the vehicles are attached. The attachment of vehi-
cles to their zones is not encoded in the vehicle behavior, but
it has an effect on how they calculate their customers inser-
tion costs. This computation should ensure that a Vehicle
agent plans its route so that it’s incentive to stay in its zone.
The definition of geographical zones of vehicles is treated as
a partitioning graph problem and is left out of the scope of
this paper. We suppose that the definition of these zones is
a system parameter, which is the responsibility of an expert.
Each zone is defined by a set of nodes and a barycentre.

Definition 1. Spatial Action Zone
Let G = (N,A) be a graph with a set of nodes N =
{(ni)}, i = {0, . . . ,m} (node n0 is the depot) and a set of
arcs A = {(ni, nj)|ni ∈ N,nj ∈ N,ni 6= nj}. Let the costs
matrix C = {(Cij)} of size m × m (the arc (ni, nj) has a
distance of Cij). We define the zone ζ = (Nζ , Aζ) as a
subgraph of G.

Definition 2. barycentre of a Zone
The barycentre of zone ζ is a node n∗ζ of Nζ that minimize∑
y∈Nζ

dn∗ζ ,y.

Each zone is defined by a barycentre and a set of nodes
(cf.Figure 2). The barycentre of a zone corresponds to the
node which is the closest to all other nodes in the zone. At
any point in time, each Vehicle agent has a distance from its
action zone. This distance depends the customers inserted
into its route. It is computed such as to include a penalty β
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Figure 1: Specialization and Attraction Zones

Figure 2: Spatial Action Zones

to the Vehicle agent distance if it integrates nodes outside
its zone. Indeed, if the node is inside the vehicle’s zone,
its distance from the barycentre of the action zone remains
unchanged. Otherwise, its distance is multiplied by a factor
β which is a system parameter.

Definition 3. Vehicle Distance from its Zone
The distance of a vehicle v from its zone ζv at a given

moment is equal to the average distance of the nodes in its
route from the barycentre of ζv:

dv,ζv =

∑
nv∈Nodes(v) dnv,n∗ζ

card(Nodes(v))

with

∀c ∈ N, dnv,c =

{
dnv,c if nv ∈ zv
β × dnv,c else

Nodes(v) represents the nodes of the Vehicle agent’s route
and card(Nodes(v)) is the number of nodes in Nodes(v).
Finally, β is the penalty imposed to the vehicle distance, if
its route integrates nodes which are outside v’s zone.

The offer that a Vehicle agent proposes to a customer for
its insertion is equal to the old distance of the vehicle from
its zone minus its new one, if it had to insert the customer.

The bigger β is, the more the vehicles are organized so that
they stay in their zones. The definition of geographical zones
of vehicles is treated as a partitioning graph problem and is
left out of the scope of this paper. We suppose that the
definition of these zones is a system parameter, which is the
responsibility of an expert.

4. SPATIOTEMPORAL MODEL
Even if it allows a better spatial coverage of the network,

the spatial self-organization model has two major drawbacks.
First, it assumes a priori geographical segmentation. With
the absence of data on previous customers demands, this
task requires a great calibration effort to specify the most
efficient zones’ segmentation. Second, it doesn’t incorporate
the temporal dimension of the problem, since a vehicle might
not be able to serve a customer even if it is located in its
zone, because of the time constraints. In the following, we
propose to integrate the temporal dimension in the Vehicle
agents’ action zones and to eliminate any a priori definition
of these zones.

In the heuristics and multiagent methods of the literature,
the hierarchical objective of minimizing the number of mo-
bilized vehicles is considered in priority w.r.t the distance
traveled by all the vehicles. The vast majority of the liter-
ature heuristics are as a consequence based on a two-phase
approach: the minimization of the number of vehicles, fol-
lowed by the minimization of the traveled distance [21]. The
model that we propose in this section has the objective of
minimizing the number of used vehicles, while keeping the
use of a “pure” insertion heuristics, i.e. without any further
improvements.

To this end, our model allows Vehicle agents to cover
a maximal space-time zone of the transportation network,
avoiding this way the mobilization of a new vehicle if a new
customer appears in an uncovered zone [28]. A space-time
pair 〈i, t〉 - with i a node and t a time - is said to be“covered”
by a Vehicle agent v if v can be in i at t. In the context of
the dynamic VRPTW, maximizing the space-time coverage
of Vehicle agents results in giving the maximum chance to
satisfy the demand of a future (unknown) customer. The
logic of this measure is different from the traditional mea-
sures’, which focus on the increase of the traveled distance,
neglecting the impact of the current insertion decision on
future insertion possibilities.

Following the description of the previous section, the Dis-
patcher agent chooses between several Vehicle agents the
one with the minimal proposed insertion cost. The systems
that are based on this heuristic use generally the measure
of Solomon [24] as an insertion cost. This measure consists
in inserting the customer which has the minimal impact on
the general cost of the vehicle (which is generally function of
the vehicle’s incurred detour). This measure is simple and
the most intuitive but has a serious drawback, since the in-
sertion of the current customer might result in making the
insertion of a great number of future customers infeasible,
with the current number of vehicles. Its problem is that it
generates vehicles’ plans that are very constrained in time
and space, i.e. plans that offer a few possibilities of insertion
between each pair of adjacent planned customers. As a con-
sequence, the appearance of new customers risks to oblige
the system to create a new vehicle to serve them. Through
the modeling of Vehicle agents’ Action Zones, we propose
a new way to compute the customer’s insertion cost in the
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route of a vehicle, and a new choice criterion between ve-
hicles for the insertion of a given customer. We propose a
computation which objective is to choose, provided a new-
comer customer, the Vehicle agent “which decrease in the
probability to participate in future insertions is minimal”.
We use that variation of Vehicle agents’ Action Zone as an
insertion cost for the insertion of a given customer in its
route.

4.1 Environment Modeling
The space-time Action Zone of a Vehicle agent is com-

posed of a subset of the network nodes, together with the
times that are associated to them. We model the MAS envi-
ronment in the form of a space-time network, inferred from
the network graph. Each node of the graph becomes a pair
〈space, time〉, which represents the “state” of the node in a
discrete time period. The space-time network is composed
of several subgraphs, where each subgraph is a copy of the
static graph, and corresponds to the state of the graph in a
certain period of time (cf. Figure 3). We index the nodes of
a subgraph as follows: 〈0, t〉, . . . , 〈N, t〉, with t ∈ {1, ..., h},
with 0, . . . , N are the nodes of the network and h the number
of considered discrete periods. The total number of nodes in
the space-time network is equal to h×N . The edges linking
the nodes of a subgraph are those of the static graph, and
the costs are the travel times as described in the introduction
(tij).

Figure 3: Space-Time Network

4.2 Intuition of the Action Zones

Figure 4: Feasible insertion

Consider a Vehicle agent v that has an empty route. In
order for this agent to be able to insert a new customer c -
described by: n a node, [e, l] a time window, s a service time,
and q a quantity - l has to be big enough to allow v to be in
n without violating his time constraints. More precisely, the
current time t, plus the travel time between the depot and n
has to be less or equal to l (cf. Figure 4). Starting from this
observation, we define the Action Zone of a Vehicle agent as
the potential customers that satisfy this constraint. To do
so, we define the Action Zone of a Vehicle agent as the set
of pairs 〈n, t〉 of the space-time network that remain valid
given his current route (n can be visited by the vehicle at
t). The Action Zone of a Vehicle agent with an empty route
is illustrated by the triangular shadow in the Figure 5 (it is
actually a conic shadow in a three-dimensional space).

Figure 5: Initial Space-Time Action Zone

When a Vehicle agent inserts a customer in his route, his
Action Zone is recomputed, since some 〈node, time〉 pairs
become not valid because of his insertion. In the Figure 6, a
new customer is inserted in the route of the vehicle. The Ac-
tion Zone of the Vehicle agent after inserting the customer
is represented by the interior of the contour of the bold lines,
which represent the space-time nodes which remain accessi-
ble after the insertion of the customer (the computation of
the new Action Zone is explained later).

The associated cost to an offer from a Vehicle agent v
for the insertion of a Customer agent c corresponds to the
hypothetical decrease of the Action Zone of v following the
insertion of c in his route.

The idea is that the chosen Vehicle for the insertion of a
customer is the one that looses the minimal chance to be
candidate for the insertion of future customers. Thus, the
criterion that is maximized by the society of Vehicle agents
is the sum of their Action Zones, i.e. the capacity that the
MAS has to react to the appearance of Customer agents,
without mobilizing new vehicles.

To illustrate the Action Zones and their dynamics, we
present the version of the measure that is related to an
Euclidean problem, i.e. where travel times are computed
following the Euclidean metric. The following paragraphs
detail the measure as well as its dynamics.

4.3 The Computation of Action Zones
In the Euclidean case, the transportation network is a
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Figure 6: Action Zone after the Insertion of a Cus-
tomer

plane, and the travel times between two points i (described
by (xi, yi)) and j (described by (xj , yj)) is equal to√

(xi − xj)2 + (yi − yj)2

Therefore, if a vehicle is in i at the moment t, he cannot be
in j earlier than ti +

√
(xi − xj)2 + (yi − yj)2.

We can compute at any time, from the current position
of a vehicle, the set of triples (x, y, t) where he can be in
the future. Indeed, considering a plane with an X-axis in
[xmin, xmax] and a Y-axis in [ymin, ymax], the set of space-
time positions is the set of points in the cube delimited by
[xmin, xmax],[ymin, ymax] and [e0, l0] (recall that e0 and l0
are the scheduling horizon and are the minimal and maximal
values for the time windows). Consider a vehicle in the depot
(x0, y0) at t0. The set of points (x, y, t) that are accessible
by this vehicle are described by the following inequality:√

(x− x0)2 + (y − y0)2 ≤ (t− t0)

The (x, y, t) satisfying this inequality are those that are po-
sitioned inside the cone C of vertex (x0, y0, t0) and with the

equation
√

(x− x0)2 + (y − y0)2 = (t − t0) (c.f Figure 7).
This cone represents the Action Zone of a Vehicle agent,

Figure 7: Initial Action Zone

with an empty route, in the Euclidean case. It represents
all the possible space-time positions that this Vehicle agent
is able to have in the future.

We use the Action Zone of the Vehicle agents when a Cus-
tomer agent has to choose between several Vehicle agents
for his insertion. We have to be able to compare the Action
Zones of different Vehicle agents. To do so, we propose to
quantify it, by computing the volume of the cone C repre-
senting the future possible positions of the vehicle:

V olume(C) =
1

3
× π × (l0 − e0)3

This is the quantification of the initial Action Zone of any
new Vehicle agent joining the MAS. When a new Customer
agent appears, a Vehicle agent computes his new Action
Zone, the cost that he proposes to the Dispatcher agent
is the difference between his old Action Zone and his new
one. The new Action Zone computation is detailed in the
following paragraph.

4.4 Dynamics of the Action Zones
Consider a customer c2 (of coordinates (x2, y2) and with

a time window [e2, l2]) that joins the system, and suppose
that v is temporarily the only available Vehicle agent of the
system and has an empty route. The agent v has to deduce
his new space-time action zone, i.e. the space-time nodes
that he can still reach without violating the time constraints
of c2. The new action zone answers the following questions:
“if v had to be in (x2, y2) at l2, where would he have been
before? And if he had to be there at e2 where would he be
after e2 + s2 ?”. The triples (x, y, t) where the Vehicle agent
can be before visiting c2 are described by the inequality [a],
and the triples (x, y, t) where he can be after visiting c2 are
describe by the inequality [b].√

(x− x2)2 + (y − y2)2 ≤ (l2 − (t)) [a]

√
(x− x2)2 + (y − y2)2 ≤ (t− (e2 + s2)) [b]

The new Action Zone is illustrated by the Figure 8: the new
measure consists in the intersection of the initial cone C with
the union of the two new cones described by the inequalities
[a] and [b] (denoted respectively by C1 and C2). The new
measure of the Action Zone is equal to the volume of the
intersection of C with the union of C1 and C2. The complete
computation of the volume of the intersection of these two
cones is reported in the Appendix A of [29].

Figure 8: Space-Time Action Zone after the inser-
tion of c2
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The cost of the insertion of a customer in the route of
a vehicle is equal to the measure associated with the old
Action Zone of the vehicle minus the measure of the new
Action Zone, after the insertion of the customer. The quan-
tity measured represents the space-time positions that the
vehicle cannot have anymore, if he had to insert this cus-
tomer in his route. The retained Vehicle agent to visit a
given customer is the one for which the insertion of the cus-
tomer causes less loss in his space-time Action Zone. This
corresponds to choosing the vehicle that looses the minimal
possibilities to be candidate for future customers.

4.5 Coordination of Action Zones
The objective of the self-organization model is to allow a

better space and space-time coverage of the transportation
network. This improvement is materialized by a minimal
mobilization of vehicles in front of the appearance of new
customers. With the mechanism described until now, every
Vehicle agent tries to maximize its own action zone inde-
pendently from the other agents of the MAS. However, it
would be more interesting to incite the agents society in its
whole to cover the network in the most efficient way. More
precisely, the fact that a vehicle loses space-time nodes that
it is the only one to cover should be more costly than to lose
nodes that are covered by other agents.

To this end, to every node of the space-time network, we
start by associating the list of vehicles covering it. Then, to
every creation of a new vehicle agent, the set of space-time
nodes that are part of its action zone is computed. The
vehicle proceeds then with the notification of these nodes
that they are part of its action zone. ces nœuds qu’ils font
partie de sa zone d’action. Every node updates its list of
vehicles that are covering it at each notification from a Ve-
hicle agent. Similarly, when the action zone of a Vehicle
agent loses a node, the node is notified and its vehicles list
updated.

Now, when the insertion cost of a customer is computed,
avery Vehicle agent starts by calculating the space-time nodes
that it would lose if it happens to insert the new customer.
Then, it interrogates each of these nodes about the “price
to pay” if it happens to not cover them anymore. This price
is inversely proportional to the number of vehicles covering
this node. More precisely, the price to pay is equal to

1

card(v〈n,t〉)

with v〈n,t〉 denoting the Vehicle agents covering the space-
time node 〈n, t〉.

This way, the space-time network being the only entity
knowing the action zones of all the Vehicle agents (thanks
to the lists of vehicles associated with the nodes), it asso-
ciates more or less penalty to the decisions of non-coverage
of the network by the vehicles as time progresses. Thus, the
Vehicle agents are incited to cover the whole network in a
coordinated way, improving by doing so the reactivity of the
MAS.

5. SIMULATION TOOL
In this section, we briefly introduce the tool that we pro-

pose for the scenarios simulation of the dynamic VRPTW.
Except for dedicated projects and commercial applications,
the systems proposing a platform for the simulation of ve-
hicle routing systems are rare. We choose to develop such

an application for several reasons. First, this allows us to
have a pragmatic vision of the execution environment of our
proposals. Then, such an application inists on the final-
ity of our proposals, which is to develop a decision support
system for transport operators. As will be illustrated here-
after, the operator is offered an interface with the state of
its fleet and the ongoing customers. These indicators allow
her to perform some afjustments when needed. Eventually,
the operator will have the possibility to choose between the
three models that we propose the most suitable one, pro-
vided her operational settings. Finally, a Web application
is also proposed for the customers, to demonstrate the de-
ployment scenario that we envision for our system, from the
customer’s viewpoint. Here follow some screenshots of the
simulation tool.

Figure 9: Vehicle Plans

Figure 10: Customers’ Itinerary

6. RESULTS
Marius M. Solomon [24] has created a set of different

static problems for the VRPTW. It is now admitted that
these problems are challenging and diverse enough to com-
pare with enough confidence the different proposed methods.
A proof for that claim is that there is no unique heuristic
that provides the best results for each one of these problems
at the same time. In Solomon’s benchmarks, six different
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Figure 11: Booking Form

∆ Distance ∆ Space-Time ∆ Space

Problem |Fleet| Dist |Fleet| Dist |Fleet| Dist

R1 (25 c) 64 6372 53 6561 58 5732

C1 (25 c) 34 3167 31 3152 32 3014

R1 (50 c) 107 12036 92 12089 101 11307

C1 (50 c) 60 6712 53 7093 58 6682

R1 (100 c) 181 17907 150 17348 164 16680

C1 (100 c) 121 16011 108 16512 113 15206

Table 1: Results summary

sets of problems have been defined: C1, C2, R1, R2, RC1
and RC2. The customers are geographically uniformly dis-
tributed in the problems of type R, clustered in the problems
of type C, and a mix of customers uniformly distributed and
clustered is used in the problems of type RC. The problems
of type 1 have narrow time windows (very few customers
can coexist in the same vehicle’s route) and the problems
of type 2 have wide time windows. Finally, a constant ser-
vice time is associated with each customer, which is equal
to 10 in the problems of type R and RC, and to 90 in the
problems of type C. We choose to use Solomon benchmarks,
while following the modification proposed by [9] to make the
problem dynamic. We have implemented three MAS with
almost the same behavior, the only difference concerns the
measure used by Vehicle agents to compute the insertion
cost of a customer. For the first implemented MAS, it re-
lies on the Solomon measure (noted ∆ Distance), on the
space-time model for the second (noted ∆ Space-Time). We
choose to run our experiments with the problems of class
R and C, of type 1, which are the instances that are very
constrained in time (narrow time windows).

Table 1 summarizes the results where we consider succes-
sively 25, 50 and 100 customers. The results show, with the
two classes of problems, that the use of the space-time model
mobilizes less vehicles than the spatial model, which in turn
behaves better than the traditional measure, whatever the
number of considered customers. These results validate the
intuition of the models that consists of maximizing the fu-
ture insertion possibilities for a Vehicle agent. Once this
result validated, it is interesting to check the results with re-
spect to the total distance traveled by all the vehicles. With
respect to this criterion, the space model behaves better than

the two others, while the behavior of the space-time model
is less efficient, since it gives better results for the problems
C1 with 25 customers and R1 with 100 customers, but is
dominated by the traditional measure for the others. The
fact remains that our results for both models provide better
results than the traditional heuristic, provided the primary
objective of the problem, which is to minimize the number
of vehicles mobilized by the system.

7. CONCLUSION
In this paper, we have proposed two agent-oriented self-

organization models for the dynamic VRPTW based on the
agents’ action zones. The action zones of the Vehicle agents
reflect their coverage of the transportation network. We use
the variation of these action zones as a new metric between
Vehicle agent to reduce the myopic behavior of traditional
metrics. By optimizing the coverage of the environment by
the Vehicle agents, our model allows the MAS to self-adapt
by exhibiting an equilibrated distribution of the vehicles,
and to lessen this way the number of vehicles mobilized to
serve the customers.

The models developed in this paper offer two solutions
with different advantages, which allow a decider to choose
the model to use following the operational configuration of
the real problem faced. In the case where the transportation
operator has a limited vehicles fleet, and where the mobi-
lization of a new vehicle is costly, it is undeniable that the
system should be grounded on the space-time model, which
mobilizes less vehicles. In contrast, in certain real prob-
lems, the operator has a virtually unlimited fleet of vehicles,
and the costs in term of traveled distance are more critical.
Indeed, certains systems relie on a fleet of vehicles, which
besides offer a traditional individual taxi service. In this
kind of systems, it is more interesting to ground it system
on the spatial model.

Our current work is oriented towards taking into account
historic data of customers requests on the network nodes.
We use these data as a weighting of the action zones of
the Vehicle agents that concern the nodes frequently re-
quested, and this to make them converge towards high den-
sity zones in the right time. Besides, the assessment the
impact of breakdowns, noshows and other dynamic changes
in the environment, on the solving process is also an ongoing
research.
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Atelier: Reprśentation et raisonnement sur le temps et
l’espace, Plate-forme AFIA 2005, Nice (France), 2005.
in french.
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