A data-oriented coordination language for
distributed transportation applications

Mahdi Zargayouna!, Flavien Balbo!?2, Gérard Scémama'

! Gretia laboratory, The French National Institute for Transport and Safety Research
Site de Marne-la-Valle “Le Descartes 2”
2 rue de la Butte Verte
93166 Noisy le Grand Cedex, France
2 CNRS-Lamsade laboratory, University of Paris Dauphine.
Place Marechal de Lattre de Tassigny,
75775 Paris Cedex 16, France.
{zargayouna,scemama}@inrets.fr, balbo@lamsade.dauphine.fr

Abstract. Data-oriented coordination languages rely on a shared space
in which agents add, read and retrieve data. They are intuitively well
suited for distributed transportation applications, where different actors
evolve in a highly dynamic and very constrained environment. However,
existing coordination languages can hardly be used for transportation ap-
plications, because they cannot express agents complex interaction needs.
Indeed, in transportation applications, the interaction needs of the agents
are driven by their current context and by ambient conditions, expressed
in the form of constraints on the values taken by variables. In this paper,
we propose LACIOS, a new data-oriented coordination language for de-
signing and implementing distributed transportation applications, and
we illustrate our proposal with two examples: a traveler information sys-
tem and a demand-responsive transport system. LACIOS allows agents to
express complex interaction needs, including agents states, system ob-
jects values, operators and functions, and is grounded on a model where
the multi-agent system design is centered on the environment.

1 Introduction

The transportation domain is a privileged field for the multi-agent community.
Indeed, it exhibits characteristics that makes it relevant to model transportation
applications in the form of many physically and/or logically distributed interact-
ing components that possess some level of autonomy. In [1], we have identified
three recurrent issues when designing and implementing transportation applica-
tions: the knowledge processing, the space-time dimension of the problems and
the dynamics of the real environment, and we have argued that the design of
an environment-centered multi-agent system (MAS) is a solution to these issues.
The multi-agent environment contains the recorded descriptions and supports
their processing. In this paper, we propose a language to specify environment-
centered multi-agent systems and we describe two applications designed and
implemented with this language.



Our language is a data-oriented language, which were initiated by Linda [4],
and has known several extensions (e.g. Klaim [3], Mars [2] and Lime [6]). Linda-
like models are based on the notion of a shared data repository. Agents commu-
nicate by exchanging tuples via an abstraction of an associative shared memory
called the tuplespace. A tuplespace is a multiset of tuples (tuples duplication
is allowed) and is accessed associatively (by contents) rather than by address.
Every tuple is a sequence of one or more typed values. Communication in Linda
is said to be generative: an agent generates a tuple and its life cycle is inde-
pendent of the agent that created it. The tuplespace is manipulated by three
atomic primitives: out to add a tuple, rd to read and in to take a tuple (read
it and remove it from the tuplespace). The parameter of out is a fully instan-
tiated tuple (sequence of values), and the parameter of an in or a rd primitive
is a template: a tuple with potentially one or more formal fields (variables). A
tuple and a template match if they have the same arity and if every field in
the tuple is either equal to the corresponding value or of the same type of the
corresponding variable in the template. The primitives ¢n and rd are blocking:
if no tuple matches their parameter template, the caller agent is suspended until
a matching tuple is present in the tuplespace. An additional primitive, eval(P),
launches a new agent that will run in parallel with the caller.

LAci10s8 is a data-oriented coordination language designed to overcome several
limitations in existing languages of the literature, and designed to facilitate their
use in transportation applications. In this paper, we focus on two limitations:
the poor expressive power of templates and the inaccessibility of agent states.
In the literature, agents are black boxes: they don’t have an observable state
described by data. Indeed, data-oriented models describe what the agents do,
not what they are. In the absence of agents’ states, agents cannot condition
their interaction with their current context, especially in the absence of a rich
interaction mechanism.

This paper is organized as follows. Section 2 describes the LACIOS language
that we propose and details its syntax. In section 3, we present the traveler in-
formation system based on LLACIOS. Section 4 presents our proposal of a coordi-
nation environment for a demand-responsive transport service. Finally, section 5
concludes the paper.

2 The coordination language Lacios

2.1 Overview

LACIOS is a coordination language that extends Linda for the design and im-
plementation of MAS, defined in a suitable way for transportation applications.
For the specification of agent behavior, we adopt four primitives inspired by
Linda and a set of operators borrowed from Milner’s CCS [5]. A MAS written in
LAcI0S is defined by a dynamic set of agents interacting with an environment -
denoted §2g Ny, which is composed of a dynamic set of objects. Agents can per-
cetve (read only) and/or receive (read and take) objects from the environment.



Agents are defined by a behavior (a process), a state and a local memory in
which they store the data they perceive or receive from the environment.

The distinguishing features of LACIOS that we focus on in this paper can be
summarized as follows. First, an agent can publish its state, update it and use it
to condition its interaction with the environment. Second, the data structure (for
exchanged data and for agents’ states) is based on typed property-value pairs.
Finally, an agent can use complex conditions (using operators and functions) on
its own state and on other shared objects in order to access the environment,
with a single instruction.

We have proposed an operational semantics, unambiguously defining the be-
havior of a MAS written in LACIOS, which can be found in [7].

2.2 Syntax

Data structure For LAcCios, we define a standard information system data
structure: every datum in the system has a description, i.e. a set of prop-
erty<—wvalue pairs, and all the properties of the language are typed. We define in
the following the notions of a type, a property and a description.

Definition 1. Types The types of the language are defined as types, . . ., typenpt .
Every type; is a set such that V(i,j) € {1,...,nbt}? i # j, type; Ntype; = {nil}

Remark 1. We assume the existence of the boolean type in the language, i.e.
Ji € {1,...,nbt}, type; = {true, false, nil}

Definition 2. Property N is the property space, it is a countable set of prop-
erties. A property m € N is defined by a type type(w) € {type1, ..., typenp:}-

A description is composed of properties and their corresponding values.

Definition 3. Descriptions DS is the set of descriptions. A description is a
function that maps properties to values, i.e. d = {m — v, | vz € type(n)}ren-
The mapping is omitted when v, = nil. We use d(m) in order to access the value
vr. For every description, the set of properties {m | d(m) # nil} is finite.

A property evaluated to nil is considered undefined. In LACIOS, every de-
scription is associated with an entity. An entity can be an object or an agent.
An object is defined by its description (O is the set of objects), while an agent
is defined by a description and a behavior (A is the set of agents).

Definition 4. Entities 2 = AU O is the set of entities of the MAS. Each
entity w € 2 has a description as defined above denoted by d,,. The value of the
property w of the entity w is denoted by d, ().

Remark 2. We assume the existence of the type reference in LACIOS, a value
of the type reference designates an entity in {2, i.e. 3i € {1,...,nbt}, type; =
U {nil}.

For instance, let 01 be an object, d,, could be defined as follows: {id — “01”,
destination — “Uppsala”, from «— “Paris”}. In this example, d,, (from) is
equal to “Paris”.



Expressions Expressions are built with values, properties and operators. We
define an operator as follows.

Definition 5. Operators Each operator op of the language is defined by:

— (i) arity(op) The number of parameters of the operator,

— (i) par(op) : {1,...,arity(op)} — {1,...,nbt}, par(op)(i) gives the index of
the type of the it" parameter of the operator op,

— (i) ret(op) € {1,...,nbt}, the index of the type of the value resulting from
the evaluation of op.

For instance, let type; = boolean. The operator and is defined as follows:
arity(and) = 2, par(and)(1) = par(and)(2) = 1 and ret(and) = 1.

Expressions are used by agents to describe the data they manipulate, either
locally or to interact with the environment. An expression may simply be a value,
an operator, or a property. If an expression is a property, it refers to a property
of the agent that is evaluating it. For instance, when destination appears in
the behavior of the agent a, it designates the destination of a. If a property
neighbor of the agent a is of type reference, neighbor.destination designates the
destination of the neighbor (an entity) of a.

Definition 6. Expressions Exp is the set of expressions. An expression e €
FExp is generated via the grammar of table 1.

e = nil

| v , with v € T\nil

| , with m € N/

| op(e,...,e), with op an operator of the language,
and nil doesn’t appear in any e

| 7.e , with 7 € N and type(r) = 2

Table 1. Syntax of an expression

We can now associate an expression with a property instead of a value in
a description. The result is a symbolic description which is transformed into a
description when its associated expressions are evaluated.

Definition 7. Symbolic descriptions SDS is the set of symbolic descrip-
tions. A symbolic description is a description that maps properties w to expres-

sions ey, i.e. sds = {m — e, | type(e,) = type(m) }ren-



Matching Since we consider a data structure richer than tuples, we also use
a matching mechanism richer than templates. The matching in LACIOS mate-
rializes what we call a contextual interaction, which is the type of interactions
that use the state of the agent and the state of objects in the environment to
access a set of objects, instead of only one like in Linda templates. To do so, we
enhance the expressions’ syntax with entity variables, which designates objects
not known by the agent, but will be discovered during the matching process and
will be replaced by objects from the environment before their evaluation.

Definition 8. Variables X is the set of variables. A variable x € X is defined
by its type type(z) € {typer, ..., typenpt}.

The syntax of an expression becomes:
en=...|z.e with z € X Atype(z) = 2

For instance, consider the following expression:

t.destination = “Uppsala” N t.price < budget N p.decision = “accepted”

In this expression, ¢t and p designate two objects, unknown for the moment,
where t has to have as destination “Uppsala” and a price less than the budget
of the agent, and where p must have as decision equal to “accepted” for the
expression to be evaluated to true.

Agents’ actions We define three primitives for LACI0S, two for the interaction
with the environment (add and look) and one for agents’ creation (spawn).

= spawn(P, sds) | add(sds) | look(sds,, sds;, e)

The primitive spawn(P, sds) launches a new agent that behaves like the
process P and that has as a description the result of the evaluation of sds (its
transformation to a description ds). The primitive add(sds) adds to 2gny an
object described by the evaluation of sds.

We choose to use a single primitive to access the environment. The primitive
look(sds,, sds, e) allows both object perception and reception (perception and
removal from 2Ny ). It blocks until a set of objects becomes present in 2gny
such that the expression e is evaluated to true; the objects associated with the
variables in sds, are perceived and those associated with the variables in sds,. are
received. For instance, the following instruction: look({ticket — t}, {paper — p},
t.destination = “Uppsala” A t.price < budget A p.decision = “accepted”) looks
for two objects that will be associated with ¢ and p. The object associated with
t will be perceived while the object associated with p will be received. After
the execution of this instruction, the two objects will be present in the local
memory of the caller agent, the latter will have two additional properties of
type reference: ticket that refers to the object associated with the variable ¢ and
paper that refers to the object associated with p.



3 An environment-centered MAS for traveler information
systems

In this section, we describe an application based on LAcios. We modeled and
implemented a traveler information server [8], called ATIS®. The server pur-
pose is to inform online travelers about the status of a part of the transport
network that concerns them. Every traveler is mobile and has a specific objec-
tive during his connection on the server. Transport Web services are represented
with agents in the server and their expertise domains constitute their properties.
These transport service providers can give information in response to a request,
or they may proactively send information concerning disturbances, accidents,
events, etc. The problem in this kind of applications concerns the information
flows that are dynamic and asynchronous. Indeed, each information source is hy-
pothetically relevant. An agent cannot know a priori which information might
interest him, since this depends on his own context, which changes during exe-
cution.

3.1 Context

Using LAcios allows us to design an information server parameterized by its
users. Indeed, if the information systems are adapted to the satisfaction of punc-
tual needs (request/response), the management of the information followup as-
sumes additional processing. These processing are difficult because the infor-
mation sources are distributed and the management of the followup assumes
a comparison of the available information. We have defined two categories of
agents, the first concerns the agents representing the users (that we call PTA for
Personal Travel Agent) while the second concerns the agents representing the
services (that we call Service Agent).

3.2 Technical description

We have implemented a Web server for traveler information, where each Web
service has a representant in the server, which is responsible of the convey of
messages from the server to the port of the Web service and conversely. The
exchange of messages between the server and the services are SOAP 4 messages
and the asynchronous communication is fulfilled via the JAXM API ® for the
Web services supporting SOAP, and a FTP server otherwise, used as a sort of
mailbox. These details are obviously transparent for the agents evolving in the
environment i.e. they interact exactly the same way whatever the transport pro-
tocol that is used. Every user is physically mobile and connects to the server via
a Mobile Personal Transport Assistant (MPTA) and has during his connection

3 Agent Traveler Information Server
4 Simple Object Access Protocol, http://www.w3.org/TR/soap/
5 Java APT for XML messaging, http://java.sun.com/webservices/jaxm/



a PTA agent representing him inside the server, which is his interlocutor dur-
ing his session. The interaction of the MPTA with the PTA agents representing
them is a sequence of HTTP requests/responses.

3.3 Execution scenario

The context of the example is the following: inside the system, there is an agent
representing a trip planning service and an agent representing a traffic service
responsible of the emission of messages related to incidents, traffic jams, etc.
These agents are persistent, since they are constantly in relation with the system
providing the service. On the contrary, PTA agents representing the MPTA in
the system are volatile, created on the connection of a user and erased at the
end of his session i.e. when he arrives at destination. We have developed a trip
planning service which role is to, first receive the trip planning demand (in the
form of a SOAP message), then calculates the plan, wraps it in a SOAP message
then sends it back to the local agent representing him in ATIS.

Every stop of the network is described by a line number line to which it
belongs, and a number number reflecting his position on the line. A user u is
also described by his current position in the network (the properties line and
number). In a basic execution scenario, u has a path to follow during his trip
i.e. a sequence of tuples {(line, numbersoyrce, NUMbET gestination )i | ¢ € I}, with
I the number of transport means used by the traveler. Every tuple represents
a part of the trip, without transfer. To receive his plan, the MPTA connects
to the information server, and the agent u representing him is created. Then,
the user is asked to specify his departure as well as his destination. Once these
information entered, u adds his planning demand in the environment. A demand
is an object described by his properties: emitter, subject, etc. Afterwards, u keeps
on listening to messages that are addressed to him, this way: look (D, {message «—
x}, x.receiver = id). The agent representing the trip planning service is listening
to messages asking for a plan: look((), {request <+ z},x.subject = “plan”). As
soon as he receives the message, he creates a SOAP message addressed to the
trip planning Web service and awaits for the response. When he receives the
answer, a message is added to the environment addressed to u with the received
plan as body: add({emitter «— id,receiver «— request.emitter,body «— plan}).
The agent u, when he receives the message, analyzes it and displays the result
on the user’s MPTA. Then, the agent u restrains his interaction to the messages
concerning events coming up on his way. To do so, he executes the following
action :

look(D, {event «— z},{z.subject = “alert”},z.line = line A z.number >
number A x.number < line)

The agent u is interested by the alerts concerning his transport plan, which is
expressed by the preceding look action. Let us assume that the agent representing
the alert service adds an alert message concerning an accident on the way of u
resulting on a serious delay for him. The traveler, via his representing agent
u, is notified concerning this alert event. Since the properties line and number
are updated at each move of u (each time he moves from stop to stop), the



segment concerned by the alert messages gets gradually reduced until the end
of the trip. The use of the environment, the constant update of the properties
of the PTA agents, together with the use of look actions allowed us to maintain
a constant awareness of the traveler about problems occurring during his trip,
without relying on continuous requests to the server.

4 Coordination environment for demand-responsive
transportation systems

We have proposed a demand-responsive transportation system (DRTS) as a MAS
in which the agents’ activities are coordinated through the environment, based
on LAcIOS.

4.1 Demand-Responsive Transportation Systems

A DRTS is a system designed to answer online customers that desire to be
transported from one point in the network to another. Customers specify a time
window associated with each point (departure and arrival) inside which they
want to be visited. In our application the environment, via the use of LACIOS,
structures the MAS components temporally and spatially, so that the interaction
between agents is driven by their perception of it. The interaction between cus-
tomers and vehicles is driven by their space-time positions, and the environment
is modeled accordingly. A main issue in this application is the dynamics of the
environment because when modeled as an MAS, DRTS are open MAS, where
agents (e.g. customers and vehicles) join and leave the system freely. In such a
dynamic environment, limiting communications is very important, since broad-
casting all the available information is very costly. We use an implicit model on
which LAcCIOS is grounded, in which communication is decoupled in space and
time, so as to offset the loss in information in dynamic environments.

4.2 System description

We have designed a distributed model for a DRTS, in which two agent cate-
gories are defined: Vehicle Agents (VA) and Customer Agents (CA). Both VAs
and CAs are generated dynamically: a new CA is associated to each new cus-
tomer connected to the system, and a new VA is associated to each new vehicle
creation (which occurs when no available vehicle can serve a new customer). The
descriptions in this system are related to VAs and CAs (see figure 1). A VA is
described symbolically by his current position and his remaining available seats.
A CA is described by his departure and arrival nodes, his time windows, the
vehicle veh, and his successor (property succ) and predecessor (pred) customer
in the route of veh. A CA that doesn’t belong to any VA route has a property
veh equal to unknownyen, and a property succ and pred equal to unknownys;.

In our application the environment structures the MAS components tem-
porally and spatially, so that the interaction between agents is driven by their



.

Fig. 1. Symbolic descriptions

perception of it. The boolean expressions contained in their look actions are de-
fined by VAs so that they will perceive only those customers they can insert in
their route. The description of a new CA (with unknown veh, succ and pred) is
perceived when: (i) there are two nodes in the route of the same vehicle between
which its departure node can be inserted without violating any of the time win-
dows of the customers in that route, (ii) if there are remaining available seats
when this insertion occurs, (iii) if there are two successor nodes in the route
of this same vehicle between which the arrival node of the customer can be in-
serted, without violating any time window of the route. As a consequence, the
use of LACI0S allows a new CA to discover the VAs that could be interested by
its insertion, without knowing them in advance, while at the same time limiting
communication in the system to only those agents that can reach an agreement
(an insertion in the route of a vehicle). It is worth noting that the VAs that
don’t perceive a CA can use their time to be candidates for the insertion of
other customers.

The protocol followed in the MAS is a negotiation mechanism between CAs
and VAs. When a new customer connects to the system, a CA is created (spawn),
and is perceived by the available VAs with their current look actions (that is,
which are not already involved in the insertion of another customer). The syn-
tax of expressions that we introduced for LAcCIOS allows for the translation of
the mathematical constraints on the insertion of a customer (vehicle capacity
and space-time feasibility) onto LACIOS expressions, which is not possible for
traditional Linda-like languages. Each VA computes an insertion price for the
insertion of this customer, and proposes it to the CA (add), which will choose
the VA proposing the lowest price. The interested reader about the complete
definition of the agents actions and their expression parameters is invited to
refer to [7].

In this application, the use of LACIOS structured agent interaction and coor-
dination, and made it more efficient to interact in a dynamic environment where



agents appear and disappear without maintaining knowledge about the others
and where communications can be disturbed and costly.

5 Conclusion

In this paper, we have described the main part of the LACIOS coordination
language while the complete definition can be found in [7]. The relevance of
LAcios for transportation applications is assessed by two applications: a traveler
information server and a demand-responsive transport service.

In [7], we have implemented a script language on top of Java for the imple-
mentation of MAS in LAcIoS (called Java-LACIOS). It consists of a compiler of a
program written in LACIOS (text file) which generates a Java program. Therefore,
system designers and programmers do not have to worry about the creation and
synchronization of threads, or the matching process, while building their MAS.
This new programming language makes it easier to build environment-centered
applications, and is suitable for transportation applications, where the interac-
tion needs of the agents (often based on mathematical constraints) are complex
and contextual.

The multi-agent environment might be distributed over several hosts, but
until now, this was done in an ad hoc way aiming at reducing communication cots
between the different hosts. We are currently working on automatic distribution
of the environment, following the specification of entities’ properties, and based
on their clustering in the form of Galois lattices.
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