
A Tree-Based Context Model to Optimize Multiagent
Simulation

Flavien Balbo1, Mahdi Zargayouna2, and Fabien Badeig1

1 Institut Henri Fayol, ENS Mines Saint-Etienne,
158 Cours Fauriel, 42100 Saint-Etienne, France

{flavien.balbo,fabien.badeig}@mines-stetienne.fr
2 Université Paris-Est, IFSTTAR, GRETTIA,

Champs sur Marne, France
hamza-mahdi.zargayouna@ifsttar.fr

Abstract. In most multiagent-based simulation (MABS) frameworks, a sched-
uler activates the agents who compute their context and decide the action to ex-
ecute. This context computation by the agents is executed based on information
about themselves, the other agents and the objects of the environment that are
accessible to them. The issue here is the identification of the information subsets
that are relevant for each agent. This process is time-consuming and is one of the
barriers to increased use of MABS for large simulations. Moreover, this process
is hidden in the agent behavior and no algorithm has been designed to decrease
its cost. We propose a new context model where each subset of information iden-
tifying a context is formalized by a so called “filter” and where the filters are
clustered in ordered trees. Based on this context model, we also propose an al-
gorithm to find efficiently for each agent their filters following their perceptible
information. The agents receive perceptible information, execute our algorithm
to know their context and decide which action to execute. Our algorithm is com-
pared to a “classic” one, where the context identification uses no special data
structure. Promising results are presented and discussed.

Keywords: Multiagent simulation, Context, Agent models.

1 Introduction

One of the main functional objectives of the simulation domain is the controlled re-
production of complex systems. The simultaneity of actions, which means that several
agents are activated at the same simulated time, is one of the properties that must be
ensured. Therefore, the execution of a MABS model enforces a scheduling process
(executed by a scheduler) that synchronizes the agents execution and simulates the si-
multaneity of their behaviors. Most of the MABS frameworks follows a cooperative
model, where the activation of agents is controlled by a scheduler and their interrup-
tion is controlled by the agents themselves. When activated by the scheduler, the agent
executes his current behavior and decides when to hand over to the scheduler.

When the agent is activated in a cooperative model, he is aware of the state of the
simulation and his action will change that state. However, the agent takes simultane-
ously into account all the information accessible to him [5] and this could imply im-
portant computation times. The issue for the agent is to find the subsets of information

J.P. Mller, M. Weyrich, and A.L.C. Bazzan (Eds.): MATES 2014, LNAI 8732, pp. 251–265, 2014.
c© Springer International Publishing Switzerland 2014

252 F. Balbo, M. Zargayouna, and F. Badeig

that are relevant for him. These subsets, that we call context, condition his behavior
and belong to the his internal knowledge. In most MABS, the relevance criterion of a
context is embedded in the agent implementation and is not separated from the actual
action to execute. It is therefore difficult to customize the context computation without
a modifying the agent’s implementation. To decrease the context computation cost, de-
signers often use nested contexts and/or behavioral automaton (NetLogo-like MABS).
From our point of view, nested contexts make it hard to design agents and to customize
context modeling. Behavioral automata on the other hand, by focusing on the internal
state of the agent, neglect the other components of the agent context. Our proposal is
the modeling of the contexts as “filters” to simplify the agent design without limiting
the context computation possibilities. The activated agent receives his perceptible in-
formation from the scheduler and executes our algorithm to find the filters associated
with his current context.

The remainder of the paper is organized as follows. Section 2 discusses the issues
related to context computation. Section 3 presents an illustrative example that is fol-
lowed all along this paper. Section 4 provides the formal definition of our proposal. Our
context selection algorithm is provided in Section 5. Section 6 presents our experimen-
tation and results. The paper concludes with a discussion and some perspectives to this
work.

2 State of Art

When an agent is activated, he is aware that he is executing a new simulation time step.
He can therefore compute his current context before to decide which action to execute.
In this section, we discuss the options to compute the agent’s context.

The first option, the most popular, is agent-oriented. The scheduler activates the
agents either by calling a default method [3,13] or with a control message [11,14] and
the activated agent computes his context. For instance in [3] the objects belonging to
the perception field of the activated agent are given to him with a perception event. The
logo-based multiagent platforms such as the TurtleKit simulation tool of MADKIT [7]
or STARLOGO1 have chosen this option. The agent is activated following the state of
his behavioral automaton that has been computed at the previous activation.

The second option is scheduler-oriented. The scheduler computes for the agents
which action to execute following their current context. To the best of our knowledge,
the framework JEDI [9], the Repast Simphony simulation platform [4] and our own
work [1,2] are the only proposals where the choice of the action that is executed by an
agent is computed by the scheduler. In the JEDI framework [9], the choice of an action
by the agent is based on an interaction matrix where a cell is a conditioned contextual
interaction between two agents. For instance, an interaction is possible between two
agents following their proximity. To each of these contexts, an action is associated and
will be executed by the activated agent. This interaction matrix is defined by the de-
signer and does not change during the simulation. Repast Simphony natively uses the
first scheduling options (i.e. with a default method), but it also allows a sort of contex-
tual activation based on “watchers”. Watchers allow an agent to be notified of a state

1 http://education.mit.edu/StarLogo/

http://education.mit.edu/StarLogo/

A Tree-Based Context Model to Optimize Multiagent Simulation 253

change in another agent and schedule the resulting action. The designer specifies which
agent to watch and a query condition that must be verified to trigger the resulting action.
This activation process is limited by the expressiveness of the watcher queries language
to express the activation context. The queries are boolean expressions that evaluate the
watcher and the watchee using primitives such as colocated, linked to [network name
], within X [network name], etc. (a network is a graph of agents relationships) and the
operators AND and OR. It is not possible to integrate complex conditions about other
components (other than the watcher and the watchee).

In previous works [1,2], we have proposed a multiagent-based simulation process
that belongs to this last option. We have modeled contexts with conditions about shared
information on the MAS components. A subset of conditions defines a specific context
and is called a filter. The multiagent environment is used as a scheduler and it activates
the agents according to filters triggering based on perceptible information. In the pro-
posal described in this paper, the environment activates the agents in turn with their
accessible information and it is the activated agent who computes his context based on
his own context model (his filters).

3 Illustrative Example

To illustrate our proposal, we present an example of context modeling for a driver en-
tering a roundabout. This example illustrates the components of our proposal and our
experiments are based on a theoretical example (Section 6). Figure 1 represents a round-
about with agents (vehicles, pedestrians and bicycles) and objects (traffic signs).

In our proposal, an agent context is a conditioned combination of the perceptible
information that are relevant for him. The only perception of the information is not
sufficient, their values have also to be taken into account. For instance, the pedestrian
agent pa1 is perceived by va1 and va2 (Figure 1) but the resulting context is not the

Fig. 1. Roundabout simulation example

254 F. Balbo, M. Zargayouna, and F. Badeig

same for each agent: 1) va1 context could be ”my speed is excessive and there is a pa1

crossing the street before me”; 2) va2 context could be ”I am about to cross entering
traffic, which is blocked by the crossing pa1”. The information are indeed the same, but
it is their combination that is relevant for the agents. After identifying their contexts,
the agents have to decide which action to execute. The issue is that these combinations
are multiple and their computation is time-consuming. The objective is to decrease the
context computation time without limiting the expressiveness of the context definition.
This definition is related to the domain expert, as well as their use in the decision pro-
cess. Moreover, the design of the agents using context information remains free. For
instance, va1 could be a BDI agent who would have initiated a plan with this infor-
mation and v2 could be a reactive agent who would reacted with an acceleration. Our
proposal is placed between the information acquisition and the decision process: we
propose a data model and an algorithm to process information context.

4 Context Model Definition

Context computation assumes that agents have information about the MAS components
(agents, objects, etc.) that are accessible to them. The accessibility conditions have to
be specified for each simulation and, in our example, we associate to each agent a
perception field where all simulation components are perceptible by him. In this section,
we propose a context model. The first component of the model is called an entity and is
a meta-information about a MAS component.

Definition 1 (Entity). An entity ω ∈Ω is a 〈rω,dω〉 pair with :

– rω: reference to a real component of the the MAS, i.e. agent or object.
– dω: description of this component recorded in the environment. It is defined by a set of
〈property,value〉 pairs.

rω gives access to the component (for the activation process if it is an agent); dω
contains information to identify the context of the agents. An entity is the link between
the MAS and the context model. In the following (except where noted), entity and
description are used interchangeably. A property gives a specific information about a
component of the MAS.

Definition 2 (Property). A property pi ∈ P is a function, which description domain d j ∈ D is
quantitative, qualitative or a finite set of data. A property is noted pi : Ω→ d j, with Ω the set of
descriptions.

The properties are used to characterize subsets of entities.

Definition 3 (PDescription). A PDescription is a subset of P and we note Pe the PDescription
of the entity e.

The extension of a PDescription is called a Category.

Definition 1 (Category). A Category is a subset of semantically similar entities with the same
PDescription : 〈label,{ω ∈ Ω|Pωi = Pω j∀ωi,ω j ∈Cx}〉 with label the name of the Category.

A Tree-Based Context Model to Optimize Multiagent Simulation 255

In our example, vehicle agents (VA), pedestrian agents (PA) and traffic signs (TS)
are category examples. At least, the list of the perceptible entities of an agent is given
to him by environment at each time step. This list is called PerceptibleCategories and
does not contain empty categories. For instance, the description of a vehicle agent could
be (we note ΩA ⊂Ω the set of agents):

– speed : ΩA → R: the speed of the agent;
– location : ΩA → N: the distance from roundabout entry or a relative value for a roundabout

lane;
– street : ΩA → {street name, lanelocation}: the name of the street or the location in the

roundabout;
– direction : ΩA → { to roundabout, from roundabout};
– turnSignal : ΩA → {left,right,off }: the state of the turn signals;
– . . .

Its PDescription is {speed, location, . . .} and its Category is 〈vehicle,{va1,
va2, . . .}〉. We propose to model a context as a filter, which tests the entity that the agent
perceives. A filter generates processed information from raw information (description
of the MAS components).

Definition 4 (Filter). A filter Fj ∈ F is a tuple Fj = 〈 fa, fC,n f 〉 with:

– fa : ΩA → {true, f alse} a mandatory assertion that expresses constraints on the agent who
owns the filter;

– fC : 2Ω→ {true, f alse} an optional set of assertions expressing constraints on others com-
ponents that complete the context;

– n f the filter name.

A filter identifies by unification the agent’s description and the context (subset
of entities) that matches the associated assertions. A filter is valid for tuples 〈a ∈
ΩA ,context ⊂ Ω〉 such that fa(agent) ∧ fC(context) is evaluated to true. When a filter
is valid, the associated context, 〈context,n f 〉, is valid for the agent a. A context being
formalized as assertions on the descriptions of the MAS components, the context and
n f information are complementary to characterize the MAS context. It means that the
same description’s subset can valid several contexts and a context can be validated by
several description’s subsets.

Let 〈 fa, fC ,warning〉 be a filter dealing with the detection of a warning related to the
potential movement of vehicles. A filter belongs to an agent and is therefore built from
his point of view. For the warning filter, the vehicle agent is on the central lane of the
roundabout (fig 1) and a slower vehicle agent before him in the other lane turns on his
left turn signal. The filter triggering depends on: i) the location of the agent (assertion
fa), ii) the perception of another agent with a perceptible property (assertion fC). The
filter warning has the following definition:

– a ∈ΩA : fa : [speed(a) =?sa]∧ [street(a) = centralLane]∧ [location(a) =?la]
– b ∈ ΩA : fC(b) : [speed(b) <?sa] ∧ [location(b) <?la + 2] ∧ [turnSignal(b) = left] ∧

[street(b) = externLane]

256 F. Balbo, M. Zargayouna, and F. Badeig

The symbol “?” before an expression identifies a variable and the operator “=” is the
comparison operator. With this filter, the agent a, when he is in the central lane, is aware
of the b slower agents who are in the external lane and up to two units before him, with
their left turn signal on. The scheduler has already filtered the perceptible entities based
on the perception field of the agent a.

We assume that the number of entities by category (the categories’ cardi-
nality) is defined by the MABS designer, or that he is at least able to order
categories following their cardinalities (without necessarily defining the exact num-
ber of entities per category). In our roundabout example, the designer does not
know the exact number of entities but he is able to define the following order
· · · < |T S| < |PA| < |VA| < .. . if the simulation concerns rush hours with a great traf-
fic activity, or · · · < |PA|< |VA| < |T S| < .. . if the simulation concerns night time with
low traffic. The rank of the filters will follow the chosen order.

Using this order, the context-knowledge of the agents is formalized as an ordered
list of pairs, that we call PotentialContext. The first member of a pair is the label of
a category, which is called reference, and the second member is an ordered tree of
filters. This tree contains the filter with reference as the tested category with the minimal
cardinality. For instance, Figure 2 describes the pair (TS, tree) for a vehicle agent. The
category T S is associated to a tree containing the filters where the category T S is tested
alone or with the categories PA and VA. We associate with the category PA (the second
element of the list) the filters where the category PA is tested alone or along with the
category VA. At least, we rank the PotentialContext list following the cardinality of the
reference.

Each agent has his own customized instance of the proposed data structure and he
processes our algorithm (described later in this paper) to browse it and find the filters

Fig. 2. Ordered list of filters

A Tree-Based Context Model to Optimize Multiagent Simulation 257

that match the accessible descriptions. The objective of this structure is to test the less
filters given the number of categories that are perceived by the agent. The basic idea is
the following: The evaluation of a filter is conditioned by the existence of an entity for
each category that it tests.

The naming convention of the filters indicates the depth of the filters in the tree
and the increasing cardinality-order of the categories to test. For instance F2:TS-VA
(Figure 2) is a filter that is at the depth 2 and testing the categories TS then VA. The
cardinality-order has two advantages. The first is algorithmic because it allows us to
look efficiently for filters that can be evaluated (Section 5). The second advantage is
practical since it insures the uniqueness of filters in the tree. For instance, the filter
F2:TS-VA does not belong to the tree of the category VA. Nevertheless, for clarity’s
sake, when the position of the filter in the tree is not discussed, we use a more explicit
naming, as for the warning filter defined earlier for the filter F1:VAx.

A node is a set of filters for which fC validation concerns the same set of categories.
To distinguish them, we append a letter to the end of the filters name. For instance,
the node F4:PA-TS-VA-VA (Figure 2) contains all filters where fC is validated with the
description of a pedestrian agent, a traffic sign and two vehicle agents (in addition to the
vehicle agent, owner of the list of filters’ tree). The filter warning belongs to the node
F1:VA since fC is related to one vehicle agent.

An arc is an inclusion relation between subsets of filters: the deeper node (the child)
contains the filters for which evaluation needs one more category to test than the shal-
lower node (the parent). For instance, the children of the node F1:TS are F1:TS-VA,
F1:TS-PA and F1:TS-TS with respectively the addition of the categories VA, PA and TS.

For a given depth, the filters are ranked in decreasing order of categories cardinality.
For a given node, these children are explored if the additional category belongs to the
perceptible categories (Section 5). Therefore, processing in priority the children that
have potentially the more chances to have descriptions increases the possibility to have
a valid context and to stop the search. For instance, there are potentially more vehicle
agents than pedestrian agents that are perceived by a vehicle agent. In Figure 2, the
filters belonging to the node F3:TS-PA-VA are tested before the filters belonging to the
node F3:TS-PA-PA if the category VA belongs to PerceptibleCategories. However, if
the objective is to retrieve all the possible contexts of the agents then the ordering of the
nodes has no consequence.

If a child node has no parent, i.e. there exists no filter concerning only the parent’s
categories, then the parent node is created but is empty.

Starting from this structure of filters and the perceptible descriptions, we can design
an algorithm that identifies efficiently the possible filters.

5 Context Computation Algorithm

The general principle is to test the only filters for which there exists descriptions
that are accessible to the agent. For each reference, the agent has to test the fil-
ters contained in the root then in each of its children if the added category exists in
PerceptibleCategories. It is noteworthy that a child node may have validated filters be-
cause accessible descriptions validate its conditions while its parent does not contain

258 F. Balbo, M. Zargayouna, and F. Badeig

any valid filter. Our context model exploits the structure of the perceived information,
the category, and not their value. The advantage is the independence of our proposal
from the environment dynamics, avoiding costly updates of the agent knowledge.

In the scheduling Algorithm 1, the number of time ticks is fixed (T) and for each
tick, the scheduler activates in turn the agents and provides a list PerceptibleCategories
to each of them. This list is built by environment, which selects among perceptible
entities the ones that are relevant for the activated agent (1-(5)). A category is relevant
if it is related to at least one filter. The list RelevantCategories is defined for each agent
as the list of the references of his relevant categories. This list is not sorted because
our algorithm aims to provide all the possible contexts; it is then necessary to explore
all the possible trees. The prefixed notation indicates the access to the members of the
concerned element and we note A the set of agents.

When an agent is activated, he executes a perception - decision - action loop. A
part of the perception step is already performed since the agent has the perceptible
entities. The browsing of PerceptibleCategories (Algorithm 2) is already a selection
of the filters, because if a category refers to a filter’s tree f t but does not belong to
PerceptibleCategories, f t is not explored. In Figure 3, only the list of filters’ trees
of the categories VA and T S are explored and not the filters’ tree of the category PA
following the selection labeled with the number 1.

In Algorithm 2, for each category belonging to PerceptiblesCategories, the agent
explores the related filters’ tree.

Fig. 3. Global overview of context model

A Tree-Based Context Model to Optimize Multiagent Simulation 259

Algorithm 1. Simulation scheduling algorithm
Require: T > 0
1: t← 0
2: while t < T do
3: for all a ∈ΩA do
4: PerceptibleCategories← perception(a.position,a.RelevantCategories)
5: a.activate(PerceptibleCategories)
6: end for
7: t← t +1
8: end while

The filter’s trees (PotentialContext) are recorded in an ordered dictionary with the
category name as a key and the filters’ trees as value. The algorithm explores the filter’s
tree in two steps:

1. It explores the filters of the current node (value 1 in Algorithm 2-(2)): it tests the fa

part of the filter (condition on the state of the agent) before to test fC (the conditions
on the concerned descriptions). This order avoids to browse the related categories
if the current state of the agent makes the filter not adapted. For instance, for the
filter warning, it is not useful to test all the perceptible vehicle agents if the acti-
vated vehicle agent is not in the central lane of the roundabout. If the agent uses a
behavioral automaton, his current state can be used here to reproduce a logo-based
simulation.

2. It explores the children saved in a sublist (value 2 in Algorithm 2-(9)): the explo-
ration of the child is performed following a recursive process applying the same
principles than for the root.

If the filter is valid given the state of the agent (Algorithm 2-(3)) and the necessary
descriptions (Algorithm 2-(4)) then it is saved in the list of valid filters of the agent.

Algorithm 2. Activate: Agent activation algorithm
Require: PerceptibleCategories
1: for all category ∈ PerceptibleCategories do
2: for all f ∈ sel f .PotentialContext[category][1] 2 do
3: if f .valid(sel f) then
4: if f .trigger(self ,PerceptibleCategories) then
5: self .validFilter.add(f)
6: end if
7: end if
8: end for
9: for all t ∈ self .Filter[category][2] do

10: self .recursiveFilterTriggering(t,PerceptibleCategories)
11: end for
12: end for
13: self .decision()
14: self .action()

260 F. Balbo, M. Zargayouna, and F. Badeig

This list is made of sublists containing the name of the filter and the list of descriptions
validating it. We choose not to compute all the combinations of perceptible descriptions
of a given filter and to only select the first successful.

The input parameters of the recursive algorithm are the part of the filters’ tree that is
explored and the accessible descriptions. A partial filters’ tree is a list of lists with, for
each imbrication level, three information:

1. The name of the new category taken into account. For instance VA for the fist call
following the filters tree given Figure 3.

2. The list of filters of the node. For instance the filters belonging to the node F2:TS-
VA Figure 3

3. The list of children that reproduce this structure. For instance the structure related
to the filters’ tree with F3:TS-VA-VA as a root.

With these information, the algorithm tests the existence of the category (Algo-
rithm 3-(1)) and if successful, it tests the nodes of the filter (Algorithm 3-(2)) then
accesses the children nodes (Algorithm 3-(7)). If the category does not belong to per-
ceptible categories then this part of the filters’ tree is not explored. For instance, the
filters’ tree with the category PA (Figure 3-selection labeled with 2) are not explored
because this category does not belong to perceptible categories.

6 Experimentation

To validate our proposal, we choose a theoretical framework in which we set categories
and filters. Our environment is a 2D grid that contains 135,000 entities distributed in 6
Categories (C4 to C9) in addition of 100,000 agents (category C1). For each Category,
we set a relative number of entities to have poorly represented categories (C4) or well
represented categories (C9) (Table 1). For each description, random values between 0
and 20 for five properties are generated.

Algorithm 3. Recursive tree of filters exploration
Require: partialTree
Require: PerceptibleCategories
1: if partialTree[1] ∈ PerceptibleCategories then
2: for all f ∈ partialTree[2] do
3: if f .valid(self) then
4: if f .trigger(self ,PerceptibleCategories) then
5: self .validFilter.add(f)
6: end if
7: end if
8: end for
9: for all t ∈ partialTree[3] do

10: self .recursiveFilterTriggering(t,PerceptibleCategories)
11: end for
12: end if

A Tree-Based Context Model to Optimize Multiagent Simulation 261

We simulate agents situated on a matrix with a size varying from 1000×1000 to
7000×7000. The agents must decide which action to perform following the MAS enti-
ties that are present in their perception field. The position of the entities is random.

Table 1. Cardinality of the Categories

nom cardinality
C4 10000
C5 15000
C6 20000
C7 25000
C8 30000
C9 35000

The filters’ tree for our tests is the one described in Figure 4. Filters are chosen to
respect a homogeneous dispatching between categories in order not to introduce bias.
An obvious bias is the overrepresentation of filters for an underrepresented category.
Hence for each category, there exists 3 filters of first level (F1), 6 filters of second level
(F2) and a filter of third level (F3) for a total of 41 filters. Each agent of the simulation
has the same filters’ tree there is therefore 4,100,000 filters to test at each simulation
step.

We compare our proposal with a solution in which filters are not organized and are
explored iteratively. The objective is to compare our proposal with an algorithm com-
puting the context with conditional branching but that remains generic. We call this
proposal a classic algorithm while ours is called structured algorithm. The computation
cost of a filter is similar in the two algorithms only the search organization is different.

We perform 30 simulations of one time cycle and measure the time spent to generate
the possible filters. To ensure a similar behavior of the two algorithms (same world state
during evaluation), at each cycle the activated agent executes both algorithms and their
computation time is measured before modifying the state of the world.

Our algorithm have been developed in Python 3.3 and processed on a PC with an
Intel Core i5-2500 CPU@3.3GHz and 12 GB memory.

We present an algorithm to reduce the context computation time during the percep-
tion step. Nevertheless this step includes the browsing of the grid containing perceptible
entities which is also a costly computation. Therefore we must assess the advantage of
our proposal according to the global computation time of the perception step. We pro-
pose two parameters for the evaluation:

– The size of the perception field: the variation of this parameter enables to know
when the decrease of the context computation runtime becomes negligible accord-
ing to the time needed to explore the grid that contains the perceptible descriptions.

– The size of the grid: the variation of this parameter enables to modify the number
of potential entities that are perceived by the agent with a constant grid exploration
cost.

262 F. Balbo, M. Zargayouna, and F. Badeig

The first result is about the percentage that the context computation process repre-
sents within the global perception step for the classic algorithm. The results are given
in Table 2. For instance, if the perception field value is 10 and the size of the 2D grid is
5000×5000 then 29.07% of the perception step execution time is related to the context
computation and therefore 70.93% to the browsing of the 2D grid that is perceived by
each agent. We observe that the context computation represents half the execution time
of the perception process when the perception field is small and it decreases quickly
(down to 17.53% for a 7000×7000 grid and a perception field of 20). If the perception
field is greater than 20 then the runtime related to the context computation process be-
comes negligible. The increase of grid size causes a decrease of the context computation
time because the time to explore the grid remains stable while the context computation
time decreases (there are less entities to process).

The second result concerns a comparison between the structured algorithm and a
classic algorithm w.r.t. the context computation time. Table 3 provides the improvement
percentage when using our algorithm w.r.t the perception field and the size of the grid.
It means that if the perception field value is 10 and the size of the 2D grid is 5000×
5000 then the necessary time to compute the context is 48.1% less with the structured
algorithm than with the classic algorithm.

Fig. 4. List of trees of filters example

A Tree-Based Context Model to Optimize Multiagent Simulation 263

Table 2. Structured algoritm : Relative performance of context computation

Perception field
matrix size 5 10 20

1000×1000 49.03% 35.52% 20.23%
3000×3000 38.95% 35.31% 24.96%
5000×5000 37.97% 29.07% 21.51%
7000×7000 35.47% 25.75% 17.53%

Our algorithm is always better than the classic algorithm but this advantage decreases
conversely to the increase of the perception field. The decrease in the improvement with
the increase of perception field is coherent with the principle of the algorithm. Indeed,
the more entities the agent perceives, the less there are empty categories. Nevertheless,
we have seen with the first experiment that the perception field has to be limited to
20, because with a superior value, the context computation time becomes negligible
according to the browsing of the grid that contains the perceptible entities.

Table 4 highlights the fact that our algorithm improves the simulation execution time
whatever the perception field size. For instance if the perception field value is 10 and the
size of the 2D grid is 5000×5000 then the time related to the perception step is 13.98%
less with the structured algorithm than with the classic algorithm. For each simulation
step and for all simulation configurations, the maximal gain is 1.82 second, the minimal
gain is 0.52 second and the average gain is 1.15 second.

Our choice to separate the context modeling and the algorithm to determine current
context allows to give to each agent his own list of filters trees. This customization
of the context can be processed without modifying the implementation of the agents.
We perform simulations where the size of the environment evolves from 500×500 to
3000×3000 with 120,000 agents with the same list of filters (Figure 4) that we compare
with three agents’ categories (C1,C2,C3) with 40,000 agents each. Theses categories
have a subset of the list of trees of filters. Each of these subsets contains the categories
given in Table 5.

The context computation time decreases for the two algorithms because agents take
into account less information to compute their context. Nonetheless, our algorithm re-
mains always better than the classic algorithm. With our algorithm, the average decrease
of the time is 7.61 seconds by cycle in comparison with the execution without the cus-
tomization of the agents’ context.

Table 3. Structured algorithm vs classic algorithm : Relative performance of context computation

Perception field
Matrix size 5 10 20

1000×1000 8.11% 13.93% 8.46%
3000×3000 57.53% 20.85% 8.11%
5000×5000 82.35% 48.1% 10.66%
7000×7000 87.77% 69.04% 29.24%

264 F. Balbo, M. Zargayouna, and F. Badeig

Table 4. Structured algorithm vs classic algorithm : Relative performance of context computation

Perception Field
Matrix size 5 10 20

1000×1000 3.98% 4.95% 1.71%
3000×3000 22.41% 7.36% 2.02%
5000×5000 31.27% 13.98% 2.29%
7000×7000 31.13% 17.78% 5.13%

Table 5. Dispatching of relevant Categories by agent’s Category

agent’s Category Relevant Category Entities number
C1 C4, C5, C8, C9 90,000
C2 C6, C7, C8, C9 110,000
C3 C4, C5, C6, C7 70,000

7 Conclusion and Perspectives

In this paper, we proposed a solution to decrease processing time of a multiagent sim-
ulation without simplifying the context modeling. This issue is important because high
execution times risk unfortunately to circumscribe the use of the multiagent paradigm
to small-size simulations. Our proposal focused on the optimization of context compu-
tation. We propose to model a context as a filter, which allows us to propose a filters’
structure as a tree and an algorithm for the agent to browse it efficiently. The proposed
structure exploits the a priori cardinality of the different categories that an agent can
take into account in the evaluation of his context. Our structure is simple and does
not take into account the tests processed by the filters as an algorithm like RETE [8].
The advantages are a low memory cost and its independence against the environment
dynamics. Our future work concerns the assessment of our proposal with distributed
simulation like in [12] and the introduction of new data structures, such as lattices,
in the organization of filters in order to take into account other filter’s classification
criteria. Our experimentation showed that our improvements became insignificant in
comparison to the time to compute the set of perceptible data. Another perspective is
to take into account the researches to optimize the environment data management like
in [10,6]. In addition, we plan to enrich the evaluation of our proposal with several real
world applications.

References

1. Badeig, F., Balbo, F.: Définition d’un cadre de conception et d’exécution pour la simulation
multi-agent. Revue d’Intelligence Artificielle 26(3), 255–280 (2012)

2. Badeig, F., Balbo, F., Pinson, S.: Contextual activation for agent-based simulation. In: Pro-
ceedings of the 21st European Conference on Modelling and Simulation, ECMS (2007)

3. Béhé, F., Galland, S., Gaud, N., Nicolle, C., Koukam, A.: An ontology-based metamodel for
multiagent-based simulations. Simulation Modelling Practice and Theory 40, 64–85 (2014)

A Tree-Based Context Model to Optimize Multiagent Simulation 265

4. Collier, N.: Repast: An extensible framework for agent simulation, vol. 36. The University
of Chicago’s Social Science Research (2003)

5. Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness.
In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg
(1999)

6. Farenc, N., Boulic, R., Thalmann, D.: An informed environment dedicated to the simulation
of virtual humans in urban context. In: Proceedings of EUROGRAPHICS 1999, pp. 309–318
(1999)

7. Ferber, J., Gutknecht, O.: Madkit: A generic multi-agent platform. In: 4th International Con-
ference on Autonomous Agents, pp. 78–79 (2000)

8. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19, 17–37 (1982)

9. Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations: From theory to
implementation. In: Ghallab, M., Spyropoulos, C., Fakotakis, N., Avouris, N. (eds.) Proceed-
ings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 383–387.
IOS Press (2008)

10. Michel, F.: Translating agent perception computations into environmental processes in
multi-agent-based simulations: A means for integrating graphics processing unit program-
ming within usual agent-based simulation platforms. Systems Research and Behavioral Sci-
ence 30(6), 703–715 (2013)

11. Sierhuis, M., Clancey, W.J., Van Hoof, R.J.: Brahms: a multi-agent modelling environment
for simulating work processes and practices. International Journal of Simulation and Process
Modelling 3(3), 134–152 (2007)

12. Šišlák, D., Rehák, M., Pěchouček, M., Rollo, M., Pavlı́ček, D.: A-globe: Agent development
platform with inaccessibility and mobility support. In: Software Agent-Based Applications,
Platforms and Development Kits, pp. 21–46. Springer (2005)

13. Wagner, G.: AOR modelling and simulation: Towards a general architecture for agent-based
discrete event simulation. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS
2003. LNCS (LNAI), vol. 3030, pp. 174–188. Springer, Heidelberg (2004)

14. Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: Towards ontology-
based multiagent simulations: The plasma approach. In: 24th European Conference on Mod-
elling and Simulation (ECMS 2010). European Council for Modelling and Simulation, pp.
50–56 (2010)

	A Tree-Based Context Model to Optimize Multiagent Simulation
	Introduction
	State of Art
	Illustrative Example
	Context Model Definition
	Context Computation Algorithm
	Experimentation
	Conclusion and Perspectives

