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MANAGING SPACE-TIME NETWORKS FOR THE DYNAMIC
TIME-CONSTRAINED VRP

Besma Zeddini∗, Mahdi Zargayouna†, Adnan Yassine ‡and Moncef Temani§

Abstract. Vehicle Routing problems are highly complex problems

for which different Artificial Intelligence techniques have been used.

In this paper, we propose an agent-oriented self-organization model

for the dynamic version of the problem with time windows. Our

proposal is based on a space-time representation of the agents’ Ac-

tion Zones, which is able to maintain a good distribution of the

vehicles on the environment. This distribution answers the objec-

tive of the dynamic problem, since it allows the agents to take their

decisions while anticipating future changes in the system’s param-

eters.

Keywords. Self-Organization, Multiagent Systems, Applications,

Planning, Scheduling.

1 Introduction

Several operational distribution problems, such as the de-
liveries of goods to stores, the routing of school buses, the
distribution of newspapers and mail etc. are instantia-
tions of NP-Hard theoretical problems called the Vehicle
Routing Problems (VRP). In its original version, a VRP
is a multi-vehicle Traveling Salesman Problem: there ex-
ists a certain number of nodes to be visited once by a
limited number of vehicles. The objective is to find a
set of vehicles’ routes that minimizes the total distance
traveled. Besides their practical usefulness, the VRP and
its extensions are challenging optimization problems with
an academic stimulating issues. One of the most widely
studied variant of the problem is the time (and capac-
ity) constrained version: the Vehicle Routing Problem
with Time Windows (VRPTW henceforth), in which the
requests to be handled are not simply nodes, but cus-
tomers. For each customer, the following information are
informed: the concerned node, two temporal bounds be-
tween which he desires to be visited and a quantity (num-
ber of goods to receive, number of persons to transport,
etc.). Each vehicle has a limited capacity, which should
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not be exceeded by the quantities that it transports. The
addition of time windows increases the complexity of the
problem, since it narrows the space of valid solutions. The
VRPTW can be formally stated as follows.

Let G = (V,E) be a graph with node set V = N ∪ 0
and edge set E = (ij)|i ∈ V, j ∈ V, i 6= j, N = 1, 2..., n is
the customer set with node 0 is the depot. With each
node i ∈ V is associated a customer demand qi(q0 = 0), a
service time si(s0 = 0), and a hard service-time window
[ei, li] i.e. a vehicle must be at i before li but can be at
i before ei and must wait until the service starts. For
every edge (i, j) ∈ A, a distance dij ≥ 0 and a travel
time tij ≥ 0 are given. Moreover, the fleet of vehicles
is homogeneous and every vehicle is initially located and
end its route at a central depot. Each customer demand
is assumed to be less than the vehicle capacity Cap. The
objective is to find an optimal set of routes (with the
minimal cost) such that:

1. All routes start and end at the depot;

2. each customer in N is visited exactly once within its
time window;

3. the total of customer demands for each route cannot
exceed the vehicle capacity Cap.

The performance criteria are in general (following this
order):

1. The number of vehicles used,

2. the total distance traveled,

3. the total waiting time.

Since the problem is NP-hard, exact approaches are
only of theoretical interest, and heuristics are performed
in order to find good solutions, not necessarily optimal,
within reasonable computational times. The VRP and
the VRPTW can be divided into two sets [20]: static
problems and dynamic problems. The distinction be-
tween these two categories relies traditionally on the
knowledge (static problem) or the ignorance (dynamic
problem) before the start of the solving process of all
the customers that have to be visited. The operational
problems are rarely fully static and we can reasonably
say that today a static system cannot meet the mobility
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needs of the users. Indeed, operational vehicle routing
problems are rarely fully static. In operational settings,
and even if the whole number of customers to be served is
known, there is still some elements that makes the prob-
lem dynamic. These elements include breakdowns, de-
lays, noshows, etc. It is thus always useful to consider a
problem that is not fully static.

We rely on the multiagent paradigm for solving the
dynamic VRPTW. Multiagent Systems (MAS) are a
paradigm having as objective to canalize the distributed
artificial intelligence in a simple conceptual approach in
the apprehension of complex problems [1]. An agent is
a software system, that is situated in some environment
and that is able to apply autonomous actions to satisfy
its goals [29], and a MAS is a network of loosely coupled
agents, which interact to solve problems that overpass the
capacities or the knowledges of each one [27]. A multi-
agent modeling of the dynamic VRPTW is relevant for
the following reasons. First, since it’s a hard problem,
choosing a design allowing for the distribution of compu-
tation can be a solution to propose short answer times to
customers requests. Second, with the technological de-
velopments, it is reasonable to consider vehicles with on-
board calculation capabilities. In this context, the prob-
lem is, de facto, distributed and necessitates an adapted
modeling to take profit of the onboard equipments of the
vehicles. Finally, the consideration of a multi-agent point
of view allows to envision new measures, new heuristics,
not envisaged by centralized approaches.

In this paper, we propose a distributed version of the
“insertion heuristic”. Insertion heuristics is a method
which consists in inserting the customers following their
revealing order in the routes of the vehicles. The vehicle
chosen to insert the considered customer is the one that
has to make the minimal detour to visit him. Several
multi-agent works in the literature have been proposed
to distribute insertion heuristics, but very few propose
new measures of the insertion cost of a customer in the
route of a vehicle, as an alternative to the traditional
measure of its incurred detour. In the present work, we
do propose such a new measure, based on a space time
representation of the Vehicle agents’ action zones. The
objective is to allow the MAS to self-adapt exhibiting an
equilibrated distribution of his Vehicle agents, and to de-
crease this way the number of vehicles mobilized to serve
the customers.

The remainder of this paper is structured as follows. In
section 2, we discuss previous proposals for the dynamic
VRPTW w.r.t our approach. Section 3 presents the archi-
tecture of the MAS that we propose. In the section 4, we
detail the space-time representation of the Action Zones
of the vehicles and its use as a measure for the insertion
decision of the customers. We report our experimental
results in section 5 and the extensions envisioned for the
model in section 6, before to conclude.

2 Related Work

As we said in the introduction, exact approaches cannot
meet operational settings, and upon the relatively small
set of benchmarking problems of [26] - 56 problems of
100 Euclidean customers1 each -, only 45 have a known
optimal solution up until today [23]. However, interested
readers by optimization approaches can refer to, e.g. [18]
for a survey.

In fact, most of the proposed solution methods are
heuristic or metaheuristic methods, which provide good
results in reasonable times, and which have presented
good results with benchmark problems. For instance,
large-neighborhood local search [2, 24], iterative lo-
cal search [17, 16], multi-start local search [21], simu-
lated annealing [4], evolutive strategies [22, 13] and ant
colonies [9]. These approaches present the best perfor-
mances with static problems (where the set of transport
requests is known a priori). For an extensive survey of
the literature for the VRPTW approaches, the reader is
invited to refer to, e.g. [12, 5].

Generally speaking, most of the works dealing with the
dynamic VRPTW are more or less direct adaptations of
static methods. For instance, the large-neighborhood lo-
cal search is adapted to a dynamic context in [10]. In [15],
the authors propose to adapt the genetic algorithms to
deal with the dynamic VRPTW. The proposed algorithm
starts by creating a population of initial solutions and
tries continually to improve their quality. When a new
customer reveals, he is inserted in all current solutions
in the position minimizing the additional cost. Upon the
static methods, insertion heuristics are the most widely
adapted in a dynamic environment (e.g. [8, 14, 6]). In-
sertion heuristics are, in their original version, greedy al-
gorithms, in the sense that the decision to insert a given
customer in the route of a vehicle is irrevocable. They
are also combined with meta-heuristics to improve the
quality of the solutions. In [33], the authors propose an
approach for the dynamic VRP, in which a central solver
made of reactors manage the events coming up in the
network. When a customer reveals, he is inserted in the
route of a vehicle as for insertion heuristics. After each
insertion, an optimization procedure is launched trying
to reduce the number of used vehicles and the total trav-
eled distance. The procedure is repeated until the current
solution doesn’t get better anymore. The customers are
handled sequentially following a decreasing priority or-
der, which is function of their respective distance and the
decreasing order of their opening time windows.

The advantage of using insertion heuristics is that they
are intuitive and fast. However, when they are applied in
a dynamic context, their solving process is said to be my-
opic. Indeed, the system doesn’t know which customers
will appear once it has assigned the known customers to

1Euclidean customers have cartesian coordinates, and the dis-
tance and the le travel times between each pair of customers are
calculated following the Euclidean metric.
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the vehicles. And even if we could have an optimal assign-
ment and scheduling of the known customers, a new com-
ing customer could make the old assignment sub-optimal,
which would - in the worst case - necessitate a whole re-
computation of all the routes.

Most of the multiagent approaches for the dynamic
VRPTW are grounded, at least partially, on insertion
heuristics. In [28] and in [19], the authors propose a mul-
tiagent architecture to solve a VRP and a multi-depot
VRP for the first and a dial-a-ride problem for the sec-
ond. The principle is the same: distribute an insertion
heuristic, followed by a post-optimization step. In [28],
the customers are handled sequentially, broadcasted to
all the vehicles, which in turn propose insertion offers
and the best proposal is retained by the customer. In the
second step, the vehicles exchange customers to improve
their solutions, each vehicle knowing the other agents of
the system. Since vehicles are running in parallel, the
authors envision to apply different heuristics for each ve-
hicle, without changing the architecture. In-Time [19] is a
system composed of Customer agents and Vehicle agents.
The Customer agent announces himself and all the Ve-
hicle agents calculate his insertion cost in their routes.
Again, the Customer agent selects the cheapest offer. The
authors propose a distributed local search method to im-
prove the solutions. Indeed, they allow a customer to
ask stochastically to cancel his current assignment and to
de reannounce himself to the system, with the objective
of having a better deal with another vehicle. MARS [7]
models a cooperative scheduling in a maritime shipping
company in the form of a multiagent system. The solu-
tion to the global scheduling problem emerges from the
local decisions. The system uses an extension of the Con-
tract Net Protocol (CNP) [25] and shows that it can be
used for having good initial solutions to complex prob-
lems of tasks assignment. The MAS profits from an a
priori structuring of the agents, since each vehicle is as-
sociated with a particular society and can handle the only
customers of this society.

From a protocol and an architecture point of view, our
system sticks with the systems we have just described,
since we propose a distributed version of insertion heuris-
tics. However, in these proposals, none have focused on
the redefinition of the insertion cost of a customer. The
traditional insertion cost of a customer in the route of
a vehicle is based on the incurred detour of the vehicle.
We propose a new insertion cost measure, focused on the
space-time coverage of the vehicles, which aims at coun-
terbalancing the myopia of the traditional measures, by
privileging an insertion process that is future-centered.

3 Multiagent System for the Dy-
namic VRPTW

Our system is composed of a dynamic set of agents which
interact to solve the dynamic VRPTW. A solution con-

sists of a series of vehicles routes, each route consists of
a sequence of customers with their associated visit time.
We define three categories of agents. Customer agents,
which represent users of the system (persons or goods),
Vehicle agents, which represent vehicles in the MAS and
Interface agents which represent an access point to the
system (Web server, GUI, simulator, etc.). When a user
logs in the MAS, the data he provides are verified (exist-
ing node, valid time windows, etc.) and, if the data are
correct, a Customer agent representing him and described
by the data he provided is created.

In [32], we have designed, implemented and com-
pared three possible architectures to model the dynamic
VRPTW: a centralized architecture, a decentralized ar-
chitecture and a hybrid architecture. We present them in
the following paragraphs.

3.1 Centralized Architecture

In this architecture, all the requests are handled by the
same “agent”. He has all the required information about
each vehicle and each customer: the occupancy rate of ve-
hicles, their current positions and the traffic conditions in
real time. Having all these information, he assigns to each
customer the most appropriate vehicle to serve them, i.e
the one having the minimal overcost related to the cus-
tomer insertion. Figure 1 illustrates this architecture, in
which, besides the three agents described above, we add a
Planner agent which represent the decision-making cen-
ter, he has in charge the routes computation and vehicles
notification of his decision.

Figure 1: Centralized Architecture

The scenario that we have proposed to study is the
following: At a given moment, a user interacts with the
Interface agent, which creates a Customer agent to rep-
resent him in the system. Once created, the Customer
agent sends his request to the Planner agent which tries
to insert him in each vehicle’s route, and retains the one
with the minimal additional cost. If there is no Vehi-
cle agent which can insert the customer, a new vehicle
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is created. Finally, the Planner agent sends the current
route to each vehicle and informs the Customer agent of
his vehicle and his visit times. The Vehicle agents don’t
execute any operation, they merely receive their current
route and update their information.

The centralized approach poses several problems. In-
deed, sequential treatment of the customer requests slow
down the system response time, which goes against the re-
quirement of fast response to dynamic customers. More-
over, the failure of the Planner agent leads to a blackout
at the global level. Nevertheless, the centralized archi-
tecture has the advantage of minimizing communications
and information updates by the agents.

3.2 Decentralized Architecture

The decentralized architecture is illustrated in Figure 2.
In this architecture, there is no bottleneck for routes com-
putation. Each Vehicle agent tries to insert the new cus-
tomer in his route, informs the other vehicles of the cus-
tomer’s insertion cost, and the vehicle with the minimal
additional cost informs the customer and inserts him in
his route. At each appearance of a new customer, the
Customer agent broadcasts his request to all the vehicles
in the system. Vehicle agents exchange their overcosts
via messages. Each Vehicle agent compares his own cost
with other agents’ costs, and stops bidding if the cost
that is being offered to him is better than his. Finally,
the winner agent (the Vehicle agent with the minimal in-
sertion cost) communicates with the Customer agent and
both (the Vehicle agent and Customer agent) upe advan-
tage of a distributed processing and to be fault-tolerant.
However, the communication costs explode with this ar-
chitecture: the number of messages exchanged between
Vehicle agents is of quadratic complexity.

Figure 2: Decentralized Architecture

3.3 Hybrid Architecture

The hybrid architecture (cf. Figure 3) is a compromise be-
tween the centralized and the decentralized approach. A
new agent Dispatcher is inserted between the Customer
and Vehicle agents and he has the role of dispatching
the customer’s request, collecting bids from the Vehicle
agents and choosing the one offering the minimal cost.
The process describes a CNP (Contract Net Protocol) [25]
where, in each occurrence of a Customer agent, the Dis-
patcher agent receives a set of proposals and selects those
with a minimal cost.

Figure 3: Hybrid Architecture

In [31], we have implemented these three architectures,
and executed them on a network of four computers. The
results show that the hybrid architecture exhibits the best
results in terms of the system’s answer time to online
customers. The decentralized architecture comes in the
second position, taking advantage of the computation dis-
tribution but suffering from its big consumption of band-
width. The centralized architecture comes in the last po-
sition, since its gain in terms of number of exchanged
messages does not counterbalance its sequentialization of
the processes. For these reasons, we maintain in the re-
mainder of this paper the hybrid architecture as a refer-
ence, and we implement the other versions of the MAS
(detailed in the rest of this paper) with this architecture.

In the previous description, we use the additional cost
related to the customer insertion to make a decision to in-
clude the new customer in a vehicle’s route. This cost is
function of the detour made by the vehicle to integrate the
new customer. As an alternative to this traditional mea-
sure, we propose in the following section “the variation
of Vehicle agents’ action zones as a cost for customers’
insertion”.

4 Self-Organization Model

In the heuristics and multiagent methods of the litera-
ture, the hierarchical objective of minimizing the number
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of mobilized vehicles is considered in priority w.r.t the
distance traveled by all the vehicles. The vast majority
of the literature heuristics are as a consequence based on
a two-phase approach: the minimization of the number of
vehicles, followed by the minimization of the traveled dis-
tance [23]. The self-organization model that we propose
in this section has the objective of minimizing the number
of used vehicles, while keeping the use of a “pure” inser-
tion heuristics, i.e. without any further improvements.

To this end, our model allows Vehicle agents to cover a
maximal space-time zone of the transportation network,
avoiding this way the mobilization of a new vehicle if a
new customer appears in an uncovered zone. A space-
time pair 〈i, t〉 - with i a node and t a time - is said
to be “covered” by a Vehicle agent v if v can be in i
at t. In the context of the dynamic VRPTW, maximiz-
ing the space-time coverage of Vehicle agents results in
giving the maximum chance to satisfy the demand of a
future (unknown) customer. The logic of this measure is
different from the traditional measures’, which focus on
the increase of the traveled distance, neglecting the im-
pact of the current insertion decision on future insertion
possibilities.

Following the description of the previous section, the
Dispatcher agent chooses between several Vehicle agents
the one with the minimal proposed insertion cost. The
systems that are based on this heuristic use generally the
measure of Solomon [26] as an insertion cost. This mea-
sure consists in inserting the customer which has the min-
imal impact on the general cost of the vehicle (which is
generally function of the vehicle’s incurred detour). This
measure is simple and the most intuitive but has a seri-
ous drawback, since the insertion of the current customer
might result in making the insertion of a great number of
future customers infeasible, with the current number of
vehicles. Its problem is that it generates vehicles’ plans
that are very constrained in time and space, i.e. plans
that offer a few possibilities of insertion between each
pair of adjacent planned customers. As a consequence,
the appearance of new customers risks to oblige the sys-
tem to create a new vehicle to serve them. Through the
modeling of Vehicle agents’ Action Zones, we propose a
new way to compute the customer’s insertion cost in the
route of a vehicle, and a new choice criterion between ve-
hicles for the insertion of a given customer. We propose
a computation which objective is to choose, provided a
newcomer customer, the Vehicle agent “which decrease
in the probability to participate in future insertions is
minimal”. We use that variation of Vehicle agents’ Ac-
tion Zone as an insertion cost for the insertion of a given
customer in its route.

4.1 Environment Modeling

The space-time Action Zone of a Vehicle agent is com-
posed of a subset of the network nodes, together with the
times that are associated to them. We model the MAS

environment in the form of a space-time network, inferred
from the network graph. Each node of the graph becomes
a pair 〈space, time〉, which represents the “state” of the
node in a discrete time period. The space-time network is
composed of several subgraphs, where each subgraph is a
copy of the static graph, and corresponds to the state of
the graph in a certain period of time (cf. Figure 4). We in-
dex the nodes of a subgraph as follows: 〈0, t〉, . . . , 〈N, t〉,
with t ∈ {1, ..., h}, with 0, . . . , N are the nodes of the
network and h the number of considered discrete periods.
The total number of nodes in the space-time network is
equal to h×N . The edges linking the nodes of a subgraph
are those of the static graph, and the costs are the travel
times as described in the introduction (tij).

Figure 4: Space-Time Network

4.2 Intuition of the Action Zones

Figure 5: Feasible insertion

Consider a Vehicle agent v that has an empty route. In
order for this agent to be able to insert a new customer c
- described by: n a node, [e, l] a time window, s a service
time, and q a quantity - l has to be big enough to allow
v to be in n without violating his time constraints. More
precisely, the current time t, plus the travel time between
the depot and n has to be less or equal to l (cf. Figure 5).
Starting from this observation, we define the Action Zone
of a Vehicle agent as the potential customers that satisfy



Zeddini, Zargayouna, Yassine and Temani

this constraint. To do so, we define the Action Zone of a
Vehicle agent as the set of pairs 〈n, t〉 of the space-time
network that remain valid given his current route (n can
be visited by the vehicle at t). The Action Zone of a
Vehicle agent with an empty route is illustrated by the
triangular shadow in the Figure 6 (it is actually a conic
shadow in a three-dimensional space).

Figure 6: Initial Space-Time Action Zone

When a Vehicle agent inserts a customer in his route,
his Action Zone is recomputed, since some 〈node, time〉
pairs become not valid because of his insertion. In the
Figure 7, a new customer is inserted in the route of the
vehicle. The Action Zone of the Vehicle agent after in-
serting the customer is represented by the interior of the
contour of the bold lines, which represent the space-time
nodes which remain accessible after the insertion of the
customer (the computation of the new Action Zone is ex-
plained later).

The associated cost to an offer from a Vehicle agent v
for the insertion of a Customer agent c corresponds to the
hypothetical decrease of the Action Zone of v following
the insertion of c in his route.

Figure 7: Action Zone after the Insertion of a Customer

The idea is that the chosen Vehicle for the insertion of
a customer is the one that looses the minimal chance to
be candidate for the insertion of future customers. Thus,
the criterion that is maximized by the society of Vehicle
agents is the sum of their Action Zones, i.e. the capacity
that the MAS has to react to the appearance of Customer
agents, without mobilizing new vehicles.

To illustrate the Action Zones and their dynamics, we
present the version of the measure that is related to an
Euclidean problem, i.e. where travel times are computed
following the Euclidean metric. The following paragraphs
detail the measure as well as its dynamics.

4.3 The Computation of Action Zones

In the Euclidean case, the transportation network is a
plane, and the travel times between two points i (de-
scribed by (xi, yi)) and j (described by (xj , yj)) is equal
to √

(xi − xj)2 + (yi − yj)2

Therefore, if a vehicle is in i at the moment t, he cannot
be in j earlier than ti +

√
(xi − xj)2 + (yi − yj)2.

We can compute at any time, from the current position
of a vehicle, the set of triples (x, y, t) where he can be in
the future. Indeed, considering a plane with an X-axis in
[xmin, xmax] and a Y-axis in [ymin, ymax], the set of space-
time positions is the set of points in the cube delimited by
[xmin, xmax],[ymin, ymax] and [e0, l0] (recall that e0 and
l0 are the scheduling horizon and are the minimal and
maximal values for the time windows). Consider a vehicle
in the depot (x0, y0) at t0. The set of points (x, y, t)
that are accessible by this vehicle are described by the
following inequality:√

(x− x0)2 + (y − y0)2 ≤ (t− t0)

The (x, y, t) satisfying this inequality are those that are
positioned inside the cone C of vertex (x0, y0, t0) and with
the equation

√
(x− x0)2 + (y − y0)2 = (t − t0) (c.f Fig-

ure 8). This cone represents the Action Zone of a Vehicle

Figure 8: Initial Action Zone

agent, with an empty route, in the Euclidean case. It
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represents all the possible space-time positions that this
Vehicle agent is able to have in the future.

We use the Action Zone of the Vehicle agents when
a Customer agent has to choose between several Vehicle
agents for his insertion. We have to be able to compare
the Action Zones of different Vehicle agents. To do so,
we propose to quantify it, by computing the volume of
the cone C representing the future possible positions of
the vehicle:

V olume(C) =
1

3
× π × (l0 − e0)3

This is the quantification of the initial Action Zone of
any new Vehicle agent joining the MAS. When a new Cus-
tomer agent appears, a Vehicle agent computes his new
Action Zone, the cost that he proposes to the Dispatcher
agent is the difference between his old Action Zone and
his new one. The new Action Zone computation is de-
tailed in the following paragraph.

4.4 Dynamics of the Action Zones

Consider a customer c2 (of coordinates (x2, y2) and with
a time window [e2, l2]) that joins the system, and suppose
that v is temporarily the only available Vehicle agent of
the system and has an empty route. The agent v has to
deduce his new space-time action zone, i.e. the space-
time nodes that he can still reach without violating the
time constraints of c2. The new action zone answers the
following questions: “if v had to be in (x2, y2) at l2, where
would he have been before? And if he had to be there at
e2 where would he be after e2 +s2 ?”. The triples (x, y, t)
where the Vehicle agent can be before visiting c2 are de-
scribed by the inequality [a], and the triples (x, y, t) where
he can be after visiting c2 are describe by the inequality
[b]. √

(x− x2)2 + (y − y2)2 ≤ (l2 − (t)) [a]

√
(x− x2)2 + (y − y2)2 ≤ (t− (e2 + s2)) [b]

The new Action Zone is illustrated by the Figure 9: the
new measure consists in the intersection of the initial cone
C with the union of the two new cones described by the
inequalities [a] and [b] (denoted respectively by C1 and
C2). The new measure of the Action Zone is equal to the
volume of the intersection of C with the union of C1 and
C2. The complete computation of the volume of the in-
tersection of these two cones is reported in the Appendix
A of [30].

The cost of the insertion of a customer in the route
of a vehicle is equal to the measure associated with the
old Action Zone of the vehicle minus the measure of the
new Action Zone, after the insertion of the customer.
The quantity measured represents the space-time posi-
tions that the vehicle cannot have anymore, if he had

Figure 9: Space-Time Action Zone after the insertion of
c2

to insert this customer in his route. The retained Vehicle
agent to visit a given customer is the one for which the in-
sertion of the customer causes less loss in his space-time
Action Zone. This corresponds to choosing the vehicle
that looses the minimal possibilities to be candidate for
future customers.

5 Results

There exists a validation problem of the different ap-
proaches for solving the Vehicle Routing Problems. In-
deed, the different heuristics, to be comparable, have
to be executed with the same data. This problem has
been partially solved thanks to the work of Marius M.
Solomon [26], who has created a set of different prob-
lems for the VRPTW. It is now admitted that these
problems are challenging and diverse enough to compare
with enough confidence the different proposed methods.
A proof for that claim is that there is no unique heuris-
tic that provides the best results for each one of these
problems at the same time. In Solomon’s benchmarks,
six different sets of problems have been defined: C1, C2,
R1, R2, RC1 and RC2. The customers are geographically
uniformly distributed in the problems of type R, clustered
in the problems of type C, and a mix of customers uni-
formly distributed and clustered is used in the problems
of type RC. The problems of type 1 have narrow time
windows (very few customers can coexist in the same ve-
hicle’s route) and the problems of type 2 have wide time
windows. Finally, a constant service time is associated
with each customer, which is equal to 10 in the problems
of type R and RC, and to 90 in the problems of type C.

The validation problem remains for the dynamic case,
since there is no benchmark for the dynamic problem.
In our case, where the dynamicity of the problem comes
from our ignorance of future customers, we could have
several configurations. Indeed, we can have more or less
customers known in advance. We can also define different
cadencies for customers appearence. In the literature, the
authors have made different choices. Some of them start
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from Solomon problems and introduce the dynamicity by
hiding a part of the customers and by diffusing them to
the system one by one (e.g. [3]). Others consider new
problems created from real data, while the dynamicity
parameters are those of the real problem (e.g. [6]). The
problem is that, if the data of the problem, together with
the systems parameters, are not rigourously the same
with the system one wants to compare his proposal with,
the results can simply not be compared. And since all
the systems parameters are generally not published, it
becomes really hard to compare a new proposal with the
existing ones.

We have made the choice not to have any known cus-
tomer before the system starts. Besides, we don’t possess
any real data that could inform us about the cadency
of customers appearance. We choose to use Solomon
benchmarks, while following the modification proposed
by [11] to make the problem dynamic. Indeed, Gendreau
et al. [11] propose to modify Solomon benchmarks to cre-
ate dynamic problems. To this end, let [0, T ] the simu-
lation time. All the date related to the time (time win-
dows, service times and travel times) are multiplied by

T
l0−e0 , with [e0, l0] the scheduling horizon of the problem.
The authors divide the customers set in two subsets, the
first defines the customers known in advance, while the
second defines dynamic customers. We don’t have this
distinction since all our customers are dynamic. For all
our customers, an occurrence time is associated, defining
the moment when the customer is known by the system.
Given a customer i, its occurrence time is generated ran-
domly between [0, ei], with:

ei = ei ×
T

l0 − e0

We have implemented two MAS with an identic be-
havior, following the hybrid architecture. The only dif-
ference concerns the measure used by Vehicle agents to
compute the insertion cost of a customer. For the first im-
plemented MAS, it relies on the Solomon measure (noted
∆ Distance) and on the Action Zones measure for the
second (noted ∆ Action Zone). We have chosen to run
our experiments with the problems of class R and C,
of type 1, which are the instances that are very con-
strained in time (narrow time windows). Recall that the
primary objective is to minimize the total distance trav-
eled by the vehicles mobilized by the system. Table 1
reports the results with the files of class R1 where we
consider successively 25, 50 and 100 customers, while Ta-
ble 2 reports the results with files from class C1 with
25, 50, 100 and 200 customers. The results show, with
the two classes of problems, that the use of our mea-
sure mobilizes less vehicles in average than the traditional
measure, whatever the number of considered customers
(6.3 < 6.4; 10.6 < 10.7; 18.8 < 19.1). These results are
verified with all the considered problem files, but only
one (where the traditional measure behaves better than
ours, relatively to the number of used vehicles), the file

∆ Distance
Average number of vehicles Average Distance

25 6.4 637.1
50 10.7 1203.7
100 19.1 1968.4

∆ Action Zones
Average number of vehicles Average Distance

25 6.3 679.3
50 10.6 1286.7
100 18.8 2149.7

Table 1: Experimental Results for class R1 with 25, 50
and 100 customers

∆ Distance
Average number of vehicles Average Distance

25 3.4 316.6
50 6 671.2
100 12.1 1601.3
200 21.6 6315.5

∆ Action Zones
Average number of vehicles Average Distance

25 3.3 347.9
50 5.9 731.5
100 11.9 1774.4
200 21.4 6979.8

Table 2: Experimental Results for class C1 with 25, 50,
100 and 200 customers

5 with 100 customers of class C1. These results validate
the intuition of the measure that consists of maximizing
the future insertion possibilities for a Vehicle agent.

However, since our measure focuses exclusively on the
insertion possibilities, the total distance traveled by the
vehicles is superior to the distance induced by the tradi-
tional measure. We believe that a compromise between
the two measures, e.g. a weighted sum of the increase
of the distance and the Action Zones loss would be able
to produce better results. The fact remains that our re-
sults dominate those of the traditional heuristic, given the
hierarchical objective of minimizing the number of used
vehicles in priority.

6 Extensions

With the mechanism described in this paper, the opti-
mized criterion by Vehicle agents is the size of their own
Action Zones. Thus, the measure of Action Zones that
we propose allows the MAS to maximize the sum of the
space-time Action Zones of the Vehicle agents of the sys-
tem. However, a more interesting measure would be to
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maximize the union of these action zones, instead of their
sum. More precisely, the fact that a vehicle looses space-
time nodes that he is the only one to cover, should be
more costly than a vehicle loosing nodes that others do
cover. To this end, to each node of the space-time net-
work, we associate a list of the vehicles that are covering
it. With each creation of a new Vehicle agent, the set
of space-time nodes that are part of his Action Zone is
calculated as described previously. The vehicle then pro-
ceeds with the notification of these nodes that they are
part of his zone. In turn, each node maintains a list of the
vehicles covering it, and when it’s notified by a vehicle,
it updates this list. Similarly, when the Action Zones of
a Vehicle agent looses a node, the latter is also notified,
and its vehicles’ list updated.

Now, when a Vehicle agent has to calculate the cost of
inserting a customer, he starts by calculating the space-
time nodes that he would loose as described all along this
paper. After that, he interrogates each of these nodes
about “the price he has to pay” for not covering them.
This price is inversely proportional to the size of the ve-
hicles’ list of each node. More precisely, the price for each
node is equal to

1

card(v〈n,t〉)

with v〈n,t〉 denoting the Vehicle agents that cover the
space-time node 〈n, t〉. The cost proposed to the customer
is the sum of these “prices” provided by the space-time
nodes od the Vehicle agent. This way, the MAS environ-
ment being the only one knowing the Action Zones of all
the agents, it associates more or less penalty to the deci-
sions of not covering the network over time. The criterion
henceforth optimized by the society of agents is not the
minimization of the Action Zones sum anymore, but their
union.

In addition, the model we have proposed in this paper
is easily extensible to a stochastic problem. Stochastic
VRP have data about the history of transport demands,
and can have more or less accurate predictions about fu-
ture demands. Our model offers the advantage of being
able to integrate these predictions in the solving process
in a natural way. Indeed, to integrate these prediction,
we follow the same process as described in the two pre-
ceding paragraphs. The only difference is that the price
a Vehicle agent has to pay for loosing a space-time node
would become

τ〈n,t〉

card(v〈n,t〉)

with τ〈n,t〉 a parameter providing the prediction of de-
mands on the node n at moment t. We orient this way
the fleet of vehicles towards the highly dense zones, with-
out changing the model nor the interaction protocol.

7 Conclusion

In this paper, we have proposed an agent-oriented self-
organization model for the dynamic VRPTW based on
the agents’ action zones, based on a MAS designed fol-
lowing a hybrid architecture. The action zones of the
Vehicle agents reflect their space-time coverage of the en-
vironment. We use the variation of these Action Zones as
a new metric between Vehicle agent to reduce the myopic
behavior of traditional metrics. By optimizing the space-
time coverage of the environment by the Vehicle agents,
our model allows the MAS to self-adapt by exhibiting an
equilibrated space-time distribution of the vehicles, and
to lessen this way the number of vehicles mobilized to
serve the customers.
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