
A multi-agent approach for the dynamic
VRPTW

Mahdi Zargayouna1,2, Flavien Balbo1,2, Gérard Scémama1

1 Inrets - Gretia laboratory, French National Institute of Transportation Research
and their Security.

Avenue du General Malleret-Joinville,
F-94114 Arcueil Cedex.

2 CNRS-Lamsade laboratory, University of Paris Dauphine.
Place Marechal de Lattre de Tassigny,

75775 Paris Cedex 16, France.
{zargayou,scemama}@inrets.fr, balbo@lamsade.dauphine.fr

Abstract. In this paper, we propose a multi-agent approach to solve a
hard combinatorial problem: the vehicle routing problem with time win-
dows. A multi-agent approach is most relevant when dealing with the
dynamic version of the problem, where all the customers are not known
before the start of the solving process. We focus on both the interac-
tion process and the computation process. For the interaction process,
we rely on the Property-Based Coordination model, enabling to limit the
interaction to the only agents that might reach a solution. The overall in-
teraction follows the well-known Contract Net Protocol. Concerning the
computation process, we propose a new heuristic, based on the measure
of the agents’ perception field over their environment, which privileges a
solving process focused on the future.

1 Introduction

The deliveries of goods to stores, the routing of school buses, the distribution
of newspapers and mail etc. are instantiations of a theoretical problem called
the Vehicle Routing Problem with Time Windows (VRPTW). In the VRPTW,
situated customers in time and space desire to be visited by a fleet of vehicles,
each customer specifying a time window inside which she wants to be visited.
The exact solving of the VRPTW is of theoretical interest and cannot handle
problems with a reasonable size. Therefore, heuristics and meta-heuristics are
developed to find good solutions in a reasonable amount of time. In order to
meet the reactivity requirement of operational applications, the most promising
category of problems is the dynamic version were all the data needed by the
system are not known before the computation starts.

Several researches in the multi-agent community have been done in the trans-
portation domain [3, 13]. Making a strong use of bottom-up paradigm as an ap-
proach to system design, makes it easier to comprehend a complex reality, by
the reification of the components of the system to manage. In the transportation



domain, the objective of many applications is the management of distributed
entities. In this context, the multi-agent approach simplifies an approach by
analogy.

In this paper, we propose a multi-agent solution to the VRPTW problem
based on an environment-centered approach. Recently, the Environment for
Multi Agent Systems technical forum group (E4MAS) has produced valuable
outputs concerning the poorly exploited concept of the environment, notably
in terms of roles, responsibilities, architecture, as well as practical applications,
thus opening many challenges in terms of modeling, methodology and engineer-
ing [11, 17].

The environment has responsibilities [17] that have been applied successfully
in the design of transportation applications. The environment being a shared
space for the agents, resources and services, its first responsibility is the struc-
turing of the MAS. The environment modeling is a solution to give a space-time
referential to a transportation application. For example, the transportation in-
telligent information systems or more generally location-based services exploit
the information about the location of the mobile users in order to adapt their
processing. There is a system which has to manage the relation between the mo-
bile user’s location and the local services. In the multi-agent solutions, this task
can be achieved by the environment. The environment either centralizes the user
agent locations and matches against the available information/services [12] or
is distributed and gives a homogeneous support to the service design [7]. More-
over, its privileged intermediary role makes the environment a good candidate to
support spatially and temporally decoupled coordination models and therefore
it is appropriate for applications taking into account dynamic real environment.
For instance, in [16], the environment contains fields that are propagated in the
environment in a certain range and used by the agents to organize the task as-
signment for Automatic Guided Vehicles. The MAS environment becomes the
common referential that enables agents to adapt their behavior according to the
dynamics of the real environment.

The second environment responsibility is to maintain its own dynamics. Fol-
lowing its structuring responsibility, it can also manage the dynamics of the
real transportation environment, ensuring the coherence of the MAS. In [16] for
instance, the environment ensures the propagation of the fields. Moreover, the
environment can ensure services that are not at the agent level or simplify the
agent design. In a traffic light control system [1], the environment, which has a
global point of view, gives rewards or penalties to self-interested agents according
to their local decision.

Because the environment with its own dynamics can control the shared space,
its third responsibility is to define rules for the multi-agent system. In a bus
network simulation [10], the main role of the environment is to constrain per-
ceptions and interactions of agents. For transportation applications that have an
incomplete knowledge, it simplifies the design of the MAS by a clear separation
between the roles of the agents and their organization. In the coordinated mon-



itoring of traffic jams application [6], the environment provides organizations,
which dynamically evolves according to the current context.

Because the agents are “users” of the services of the environment and in order
to really create a common knowledge, the last responsibility of the environment
is to make observable and accessible its own structure.

Based on this last responsibility, the Property based Coordination (PbC)
principle [19] promotes an effective separation between an observable descrip-
tion of the abstract and real MAS components and the use by the agents of
these descriptions to coordinate them. The multi-agent environment contains
the recorded descriptions and supports their processing. Initiated by Linda [2],
the data-oriented coordination models have focused on what the agents do, not
what they are. In the absence of agents’ states, the context of the interaction
cannot include this information. That means that an agent can not condition
the reception of information according to its state and/or the state of other
agents. Thanks to the PbC principle, the state of the agents is observable in the
environment and can be used for coordination purpose.

Our proposal is a VRPTW system based on a multi-agent environment com-
pliant to the PbC principle. The environment in our application structures the
MAS components temporally and spatially, so that the interaction between
agents is guided be their perception on it, limiting this way the communica-
tions cost. Thanks to the PbC principle, the communication between agents
is decoupled in space and time, palliating the loss in information in dynamic
environments.

This paper is organized as follows. Section 2 describes the VRPTW problem
and the Multi-agent approaches to solve it. In section 3, the coordination model
of our MAS for the dynamic VRPTW is exposed. Section 4 presents our proposal,
and section 5 evaluates its efficiency. Finally, section 6 concludes the paper.

2 The VRPTW problem

2.1 Overview

In the VRPTW problem, there are customers that have to be assigned to a fleet
of vehicles. Each customer is assimilated to a request that is situated in time - a
time window - and space - a node of the transportation network - and to which
is associated a quantity. The vehicles have a limited capacity and they start and
end their trips at a unique depot. This problem can model, for instance, the
two following scenarios. The first scenario is a company that manages a fleet
of vehicles located initially in a local mall. Customers who desire to go back
home late from the mall cannot use the regular transportation services. With a
VRPTW system, they can connect to the company server asking for a vehicle to
take them home not later than a certain time. The second scenario is a company
that has a central depot with a big amount of goods, and a fleet of vehicles.
The customers of this company are stores that desire to receive goods from the
depot. However, they cannot receive the goods at any time, and they specify an



interval of time within which they want to be visited by a vehicle, and a service
time necessary to its employees to take the goods out of the vehicle.

The data of the problem are the following. Let [e0, l0] be the “scheduling
horizon” of the system: for all the requests, the time window has to be comprised
between e0 and l0. Every customer request ci is described by : ni the node of the
network concerned by the request, qi the quantity associated with the request, ei

and li the earliest and the latest time in which the vehicle can visit the customer
ci, and si the service time of the request, which is the time that the vehicle is
obliged to spend in ni before it can leave. Every vehicle has a maximal capacity
κ. Two cost matrices are defined: the matrix of travel times and the matrix of
travel distances between every pair of nodes of the network.

Given m vehicles, the exact solving of the VRPTW is to find the optimal set
of m routes minimizing the total distance traveled by the vehicles. When using
approximate methods, the size of the fleet of vehicles has to be found by the
system, and the performance criteria becomes:

1. The number of vehicles used,
2. the total distance traveled by all the vehicles.

Delays, breakdowns, no shows are examples of events that imply a dynamic
solving of the VRPTW problem and we can say that a fully static system cannot
meet operational settings. The term dynamic VRPTW refers most often to a
problem where all the customers are not known when the system starts. This
problem is equivalent to the openness problem in MAS, where agents can join
and leave the system freely - here the agents are customers and vehicles.

In order to take into account the incomplete knowledge of the data, the
most widely used methods are insertion heuristics. Insertion heuristics are greedy
methods: a customer is assigned to a vehicle once and this assignment is never
reconsidered. The choice of the vehicle in which route the customer will be
inserted is based on the increase of the general cost - basically, the traveled
distance - resulting from this insertion. The advantage of insertion heuristics
is that they provide a solution quickly. However, they are said to be myopic
since the future consequence of the assignment is not taken into account in the
decision. Indeed, the choice is only based on the traveled distance and do not
take into account the future availability of the vehicle. The myopic behavior of
the insertion heuristics motivated the use of more elaborate measures that take
into account the availability of vehicles to future requests.

2.2 MAS modeling of the VRPTW

Multi-agent approaches for the dynamic VRPTW rely most generally on inser-
tion heuristics (see e.g. [8] for a MAS modeling of a static VRPTW). Dial [4]
proposes a MAS where the matching of customers with vehicles is based on an a
priori geographic clustering. To each vehicle is associated a geographic zone, it is
responsible of the customers inside this zone. Vehicles of the same region try to
insert the customer at a minimum cost. Fischer et. al [5] propose a system com-
posed of two types of agents: companies and trucks. Following the Contract Net



Protocol (CNP) [14], the customer connects on a company, which broadcasts
its request to all its vehicles. The vehicles answer if they can insert the cus-
tomer by specifying their insertion cost. The vehicle with the minimum cost is
selected to serve the customer. In order to improve the solutions, the companies
exchange customers with high costs or that are not feasible, via a blackboard.
In [9], the MAS is composed of Interface agents, Customer agents and Vehicle
agents. When a customer reveals to the system, the request of a new customer
is broadcasted to all the vehicles of the system. The authors allow a customer to
announce himself again after it is assigned to a vehicle in order to find a better
deal.

These protocols follow the same process as the insertion methods: for each
request, the cost of the insertion is computed for each vehicle and the best
vehicle is chosen. Thanks to the MAS paradigm, the computation is distributed
since the vehicles locally compute the cost of the insertion. The main result is
an improvement of the robustness and flexibility of the computation process.
Nevertheless, there is a communication cost that we propose to reduce with the
use of a data-oriented coordination model called Property-Based Coordination
(PbC) [19].

3 Coordination model of the MAS for the dynamic
VRPTW

3.1 The space-time coordination problem

As in [9], we propose three categories of agents: interface agents (IA), customer
agents (CA) and vehicle agents (VA). The IA is the interface between a human
user and the MAS, it takes into account the request of the user and validates
it. The IA checks that the space-time description of the request is correct: the
time window is included in [e0, l0] and the node exists in the network. If this
step succeeds, the IA creates a CA that is the representative of the user in the
system. After the request of the customer is treated, the CA will inform its user
about the best offer that it received and the corresponding vehicle. The role of
the CA is to find the best vehicle according to the user request. To reach its
objective, it initiates a CNP with the available VAs. The interaction between a
CA and a VA is based on their space-time relation: some vehicles cannot satisfy
a request, provided their current plan - composed of other customers. In order to
avoid useless communication between CAs and VAs and processing, we propose
to limit the communication to the only VAs that are able to satisfy the CA’s
request, using a data-oriented coordination model.

In the data-oriented coordination models, the reading and the retrieval of
data from the shared data space is done by contents. Indeed, an agent specifies a
template and the first data matched with it is returned. A specificity of the PbC
model is that the data space is the multi-agent environment and the retrieval
of a data is assimilated to a perception over this environment. In data-oriented
coordination models, agents perceive the data exchanged in the data space, while



in the PbC model, the observable state of the agents can be perceived as well.
In our problem, the state of the CAs and the state of the VAs can be used in
order to limit the communication. For instance, the perception of a request by
a VA depends on the state of the VA, e.g. its current capacity, in addition to
the space and time location of the request. By defining perception conditions
in the environment, the communication is limited, since the requests perceived
by the vehicles will be circumscribed to those of a subset of the CAs present
in the environment, i.e. those that the vehicle can reach without violating any
space-time constraint. Moreover, the relation between a VA and its perception
of the environment can be used to propose a new heuristic.

3.2 Coordination model: the PbC model

As said above, in PbC the data space is the MAS environment. Our environment
model consists of a set of m entities, Ω = {ω1, ..., ωm} and a set of k filters,
F = {f1, ..., fk}. An entity ω is related to a component of the MAS (agent,
percept, object) and has a description given by observable properties. Let P =
{P1, ..., Pn} be the set of the n observable properties of the MAS. An observable
property Pi is a function that gives for an entity ω a value that can be used for
the interaction, ∀Pi ∈ P, Pi : Ω → di∪{unknown, null}, with di the description
domain of Pi, its value set or its type. The value of an entity e for the property
Pi is given by Pi(e). The agents are the active entities that change the state
of the MAS environment by adding/retrieving objects. The agents are not only
processes that exchange data via the data space, they are also represented by
data describing their current observable states (their properties).

The matching in PbC is based on the notion of a filter. A filter f(a, o, C) is
defined as a conjunction of conditions. It describes the agent a interested by the
perception, the entity o it wants to perceive, and the context C of the perception
i.e. a set of entities (might be empty). A context is the observable state of the
environment at a certain moment, e.g. the presence of a certain vehicle in the
vicinity of a given node.

Definition 1 (Filter). Let A ⊂ Ω be the subset of agents, let O ⊂ Ω be the sub-
set of objects, the filter f is defined as follows, f : A×O×P(Ω) → {true, false}
f(a, o, C) = fag(a) ∧ fpe(o) ∧ fco(C) where:
-fag(a) = ∧Pi∈Pfag

[Pi(a)Rfag

Pi
d

fag

Pi
]

-fpe(o) = ∧Pi∈Pfpe
[Pi(o)R

fpe

Pi
d

fpe

Pi
]

-fco(C) = ∧c∈Cgco(c), with
gco(c) = ∧Pi∈Pc

[Pi(c) Rc
Pi

dc
Pi

].

For instance, the filter f(a, o, {a2}) = [id(a) = “a1”] ∧ [id-owner(o) =
id(a2)] ∧ [state(a2) = “busy”] conditions the perception of an object to the
observable state of its owner. The first condition indicates that the filter con-
cerns the perception of an agent having the constant “a1” as identifier. This
agent a1 perceives the objects which owner is a2, only if the latter is busy.



4 A MAS based on PbC for the dynamic VRPTW
processing

We rely on the PbC model to manage the interactions inside the MAS. The
central idea in using the PbC model is to allow VAs to specify their current
insertion possibilities by filters in the environment so that they perceive the
only CAs they can actually insert in their plan.

4.1 MAS components description

We use PbC to model a system for the VRPTW. In our system, the choice
of the properties to be made observable is directed by their use in filters. If a
property is not used in any filter, then there is no need to make it observable. The
opportunity of this choice is made clear when considered together with the filter
in which the properties are used. A CA is described by the following properties
(see section 3.1): n, e, l and s. For instance, let a be a CA, n(a) value is the node
of the network where the request has been located by the customer. Moreover,
the selection of a request by a vehicle is done according to the feasibility of
its insertion in its current plan. This constraint implies that the link between
the plan of the vehicle and its composing customers has to be observable by
the environment. For a CA c, we define the properties veh and succ representing
respectively the VA v to which plan the CA c belongs and the successor of c in the
plan of v. Both properties are evaluated to unknown if the CA is still searching
for a VA to be associated to. These properties, together with the properties e, l
are updated according to the result of the solving process, detailed in the next
section. In order to express the capacity constraint, we define a property cap for
the VA representing its capacity. Moreover, each agent in the environment has
the property id that gives its identity.

The messages that these agents exchange in the CNP are objects in the
environment. Each message has two properties: the sender and the receiver. The
values of these properties are the id of an agent or unknown if the message is not
addressed, e.g. a request. For a request object, we define the following observable
properties: the node (n), the time window made of a lower bound (e) and an
upper bound (l), the service time (s), the quantity (q) and an id, which are the
characteristics desired by the CA that submitted the request. When a CA puts a
request in the environment, it initiates the CNP and gives the information that
are needed for the solving process. In order to express the space-time constraint,
we define an object Edge. An Edge specifies the travel times between every
pair of nodes of the network, it has three properties: the origin node on, the
destination node dn and the cost associated cost. This description of the MAS
components gives the information that are used in the computation process. In
the next sections, we give the execution of the CNP protocol using PbC.

4.2 Vehicle selection

In the CNP, the first step is the search by the initiator of the protocol of the
agents that are able to satisfy its request. With PbC, this is done by a CA that



puts a request in the environment and by its perception by the related vehicles.
This step implies that a filter compares the request description with the current
observable state of the MAS. If no VA can satisfy the request, then a new VA is
created.

The main constraint of the VRPTW is the following. The insertion of a
customer c∗ in the plan of a vehicle v∗ is feasible if:

– the quantity associated to the request of c∗ does not exceed the current
capacity of v∗,

– There exists a position in the plan of v∗ between two adjacent customers,
say c1 and c2, so that v∗ can visit c1, then c∗ and finally c2 without violating
any time window of the three customers (cf. figure 1).

Fig. 1. Feasible insertion

The filter expressing these constraints is complex and is decomposed in two
parts fcapacity and fspace−time in order to simplify the presentation. The capacity
constraint is related to the insertion of a customer c∗ that submitted a request
r∗ in the plan of the vehicle v∗ , it is defined as follows:

fcapacity(v∗, r∗, ∅) = [q(r∗) ≤ cap(v∗)]

The VA that inserts a customer updates its current capacity cap by withdrawing
the quantity associated to the new customer. This way, the VA will henceforth
perceive the only requests that respect its capacity constraint.

The space-time constraint related to the insertion of a customer c∗ that
submitted a request r∗ in the plan of the vehicle v∗, between two customers c1

and c2 is specified as follows:

fspace−time(v∗, r∗, {c1, c2, a1, a2}) =

[succ(c1) = id(c2)] ∧ [veh(c1) = id(v∗)]∧



[n(c1) = on(a1)] ∧ [n(r∗) = dn(a1)]∧

[e(c1) + cost(a1) + s(c1) ≤ l(r∗)]∧

[n(r∗) = on(a2)] ∧ [n(c2) = dn(a2)]∧

[Max(e(r∗), e(c1) + cost(a1) + s(c1))+

s(r∗) + cost(a2) ≤ l(c2)]

The context of the filter describes the position where the customer can be
inserted. It is composed of the two customers c1 and c2 between which the cus-
tomer might be inserted and the two edges a1 and a2 linking respectively c1 to
c∗ and c∗ to c2. The conditions [succ(c1) = id(c2)] and [veh(c1) = “v∗”] identify
two adjacent CAs in the plan of the considered VA v∗. The rest of the conditions
express the feasibility of the insertion as described above. First, the two edges a1

and a2 are identified ([n(c1) = on(a1)]∧ [n(r∗) = dn(a1)] and [n(r∗) = on(a2)]∧
[n(c2) = dn(a2)]). Second, the feasibility of the insertion of c∗ after c1 ([e(c1) +
cost(a1) + s(c1) ≤ l(r∗)]) and before c2 ([Max(e(r∗), e(c1) + cost(a1) + s(c1)))+
s(r∗) + cost(a2) ≤ l(c2)]) are checked. As a consequence, the filter fV RPTW

of a VA that verifies the capacity constraint and the space-time constraint is
fV RPTW (v∗, r∗, {c1, c2, a1, a2}) = fcapacity(v∗, r∗, ∅)∧fspace−time(v∗, r∗, {c1, c2, a1, a2}).

Each time that this filter matches, a VA receives the request description, plus
the id of the customer after which c∗ can be inserted (c1 in the filter). This allows
the VA v∗ not to check all the possible insertion positions, since this information
is caught by the filter. In order for the filter fV RPTW to allow a new Vehicle v to
participate in the interaction, v must have at least two customers in its plan (c1

and c2), otherwise, v won’t be able to perceive anything. Hence, when created, a
VA has two customers d′ and d” by default in its plan. These customers do not
correspond to human users, but represent the depot. These customers have the
following description: s(d′) = s(d”) = 0, e(d′) = e(d”) = e0, l(d′) = l(d”) = l0,
q(d′) = q(d”) = 0, n(d′) = n(d”) = depot. Thus, for a VA with an empty plan,
the insertion of a customer is feasible if the vehicle can leave the depot, visit this
customer and go back to the depot without violating its time window.

4.3 The choice criterion

The next part in the CNP protocol, is the computation of a price by each VA that
received a request. When using an insertion heuristic, the decision to assign a
customer to a vehicle is based on the increase of the cost (the traveled distances).
This measure is myopic, because it does not take into account the future, and
an insertion decision might imply a greater insertion cost later. The problem we
point out is that the solutions generated by any algorithm based strictly on a
cost function that do not take into account future requests, tends to generate
solutions that are very constrained, i.e. with tight spatiotemporal gap between
customers in the plan of the vehicle. As a consequence of the use of this measure,
the algorithm leaves fewer future insertion possibilities, and the consideration
of new requests might oblige the system to create new vehicles. The intuition



of the measure we propose is to focus on the future insertion possibilities. A
perception field, that is made of all the positions where it can be in the future
and their associated times is associated to every VA. The perception field is
maximal for a VA with an empty plan and decreases monotonically with the
insertion of new customers in its plan, since a new insertion obliges the VA to
sacrifice some space-time positions in order to visit the new customer without
violating its time windows.

In order to illustrate the measure, we consider an Euclidean VRPTW. In the
Euclidean-VRPTW, the network is a plane, and the travel times are computed
with the Euclidean metric, i.e. the travel time between two nodes, say i and
j with coordinates (xi, yi) and (xj , yj), is equal to

√
(xi − xj)2 + (yi − yj)2. In

this context, a VA v with an empty plan has a perception field described by
the figure 2 (the coordinates of the depot are (x0, y0)). The set of all possible
3-tuples (x, y, t) that the vehicle can have are those located inside the cone of
vertex (x0, y0, e0). The measure associated to the perception field of this VA is
the volume of this cone. For every CA inserted in the plan of a VA, the latter
updates its perception field and the measure associated to it.

Fig. 2. Initial perception field

A VA receives the only requests that it can satisfy - those located inside the
cone -, plus the id of the customer after which the insertion can be done. With
these data, the VA computes locally the cost of the insertion. Consider a CA c2

that submitted a request and let us suppose that the VA v is a candidate for its
insertion. The VA v has to infer its new perception field if it had to insert c2.
The new perception field is described by the figure 3. The new 3-tuples (x, y, t)
accessible to v if it had to insert c2 are those of the old perception field that are
still accessible after the insertion of c2 (the space inside the bold black line). The



Fig. 3. Perception field after the insertion of c2

price is computed by the VA v with respect to the insertion of c2 and is equal
to the measure associated to the old perception field minus the new perception
field resulting from the insertion of c2. This price reflects the decrease in the
probability of participation of v to the insertion of future requests.

The last part of the CNP is the sending of offers from the VAs that received
the request to the CA (c2 in the previous example). The offers are addressed
messages. The perception of addressed messages is done by the following filter :

fdyadic(a,m, ∅) = [id(a) = receiver(m)]

Each concerned VA sends to the CA its price for the request and the new time
window of the customer if it had to be inserted in the plan of the VA. The
CA chooses among the offers that it receives the one with the lower price and
following the CNP, it sends an addressed accept message to the selected VA,
and addressed reject messages to the others. This VA informs the customers
already inserted in its plan about the consequence of this insertion (some of
them will see their time windows narrowed). Each contacted CA updates its
related properties (e and l). When the human users are actually visited by a
vehicle, they are visited at the time window’s lower bound (property e) of their
representative CA.

5 Results

Our system was coded in JAVA and executed on a Personal Computer with a
PentiumTMIV 3.2 Ghz processor. We ran it with the Solomon’s benchmarking
problems [15] with three versions: 50, 100 and 200 customers. Three classes of



problems are available: C for clustered customers, R for uniformly distributed
customers and RC which is a mix of the two. We chose to use the R1 class (with
10 files) since we do not associate any weighting function with customers’ loca-
tion and since we suppose, in the absence of any historical data, that unknown
requests may concern any location, following a uniform distribution. Our system
starts with no requests known in advance, because we choose to consider each
customer independently from its successors. The first indicator we are interested
in is related to the interaction process, via the PbC model, materialized by the
number of messages received by the VAs. We compare our approach with a
broadcast approach, consisting on sending every new request to all the available
vehicles. The figure 4 shows that our approach becomes more and more relevant
as we consider more and more customers. We see that the number of useless
communications is increased when we consider more customers, and the use of
PbC becomes more relevant in the presence of more agents in the MAS.

Fig. 4. Number of messages : PbC vs Broadcast

The second indicator is related to the solving process. When the size of
the fleet of vehicles is fixed in advance, the central concern with a dynamic
VRPTW system is the amount of rejected requests, which should be limited.
However, since we create vehicles dynamically when no vehicles can serve a new
customer, our system does not reject any request; hence, our central concern
becomes the size of this fleet. We have implemented a system which behavior
is similar to ours. The only difference is the price computed by a VA, which
is equal to the increase of the traveled distance, and not the loss of perception
field as we do. The increase of the traveled distance is the traditional measure in
insertion heuristics. Table 1 reports the results with files of the class R1 where



we consider successively 25, 50, 100 et 200 customers. The results show that the
use of our measure mobilizes less vehicles the the traditional measure, and this is
the case whatever the number of considered customers. This result validates the
intuition of the measure which consists on the maximization of future insertion
possibilities for a VA. However, since our measure focuses exclusively on insertion
feasibilities, the total distance traveled by all the vehicles with our measure is
superior to the distance traveled with the traditional measure. We think that a
compromise between the two measures, e.g. a weighted sum of the increase of
the distance and the loss of perception fields is able to give better results w.r.t
the two criteria.

∆ Distance

Number of vehicles Distance

25 3,4 316,6
50 6 671,2
100 12,1 1601,3
200 21,6 6315,5

∆ Perception Fields

Number of vehicles Distance

25 3,3 347,9
50 5,9 731,5
100 11,9 1774,4
200 21,4 6979,8

Table 1. Experimental results with on class R1 with 50, 100 et 200 customers

6 Conclusion

In this paper, we propose a multi-agent approach for the dynamic VRPTW. We
focused our presentation on Vehicle agents and Customer agents, and on their
dynamic linking. The use of the PbC model allows us to circumscribe this link
to the VAs and CAs which constraints allow for a possible insertion, thanks to
filters. The new measure we propose in this paper is based on the perception
fields of the agents. Indeed, VAs compute a price corresponding to the insertion
of a CA, by computing their loss of future space-time positions. The VA that
has the minimum loss is selected, privileging thus future insertion possibilities
instead of immediate cost optimization.

In [18], we have proposed a coordination language called Lacios inspired by
PbC to unambiguously specify the behavior of the agents of the MAS, and a
programming language to implement open MAS in Lacios and run it in Java.
We also have proposed a complete solution for a more constrained application



than the VRPTW: the Dial-A-Ride problem in which human users desire to be
transported from a point of the network to another one inside a time window.

In this paper, we focused on the number of used vehicles criterion. We trans-
formed this global objective - the minimisation of the number of vehicles used -
to a local objective - the maximization of the perception fields width. Future
works focus on the generalization of the perception fields measure to other dis-
tributed applications. Indeed, it would be interesting to assess the shift of a
problem objective to a perception fields optimization in the general case.

Concerning the transport applications, we will consider problem versions
where the dynamicity concerns changes in travel times as well. The checking of
the feasibility of a request under travel times changes will be handled by specific
filters. In addition, future experiments will mix the measure of perception field
with the traditional increase of travel distance metric.

References

1. Ana L. C. Bazzan. A distributed approach for coordination of traffic signal agents.
Autonomous Agents and Multiagent Systems, 10(1):131–164, March 2005.

2. Nicholas Carriero, David Gelernter, and Jerrold Leichter. Distributed data struc-
tures in linda. In POPL’86: Proceedings of the ACM symposium on Principles Of
Programming Languages, pages 236–242, New York, NY (USA), 1986. ACM Press.

3. Paul Davidsson, Larry Henesey, Linda Ramstedt, Johanna Trnquist, and Fredrik
Wernstedt. An analysis of agent-based approaches to transport logistics. In Trans-
portation Research part C: emerging technologies (special issue), volume 13(4),
pages 255–271. Elsevier, 2005.

4. Robert B. Dial. Autonomous dial-a-ride transit introductory overview. Trans-
portation Research Part C: Emerging Technologies, 3(15):261–275, 1995.

5. Klaus Fischer, Norbert Kuhn, and Jrg Mller. Distributed, knowledge-based, reac-
tive scheduling of transportation tasks. In AIA’94:Proceedings of the Conference
on Artificial Intelligence for Applications, pages 47–53, San Antonio, TX (USA),
1994.

6. Robrecht Haesevoets, Bar Van Eylen, Danny Weyns, and all. Context-driven dy-
namic organizations applied to coordinated monitoring of traffic jams. In Danny
Weyns, Sven Brueckner, and Yves Demazeau, editors, Proceedings of Workshop
Engineering Environment-Mediated Multiagent Systems, pages 126–143, 2007.

7. Jason I. Hong and James A. Landay. An architecture for privacy-sensitive ubiqui-
tous computing. In In Proceedings of International Conference on Mobile Systems,
Applications, and Services, pages 177–189, June 2004.

8. Mariem Kefi and Khaled Ghedira. A multi-agent model for the vrptw. In Proceed-
ings of Urban Transport’04, Germany, 2004.

9. Robert Kohout and Kutluhan Erol. In-Time agent-based vehicle routing with a
stochastic improvement heuristic. In AAAI’99/IAAI’99: Proceedings of the na-
tional conference on Artificial intelligence and the conference on Innovative ap-
plications of artificial intelligence, pages 864–869, Menlo Park, CA (USA), 1999.
AAAI Press.

10. David Meignan, Olivier Simonin, and Abderrafiaa Koukam. Adaptive traffic con-
trol with reinforcement learning. In 4th Workshop on Agents in Traffic and Trans-
portation (ATT), pages 50–56, 2006.



11. Eric Platon, Marco Mamei, Nicolas Sabouret, Shinichi Honiden, and H. Van Dyke
Parunak. Mechanisms of the environment for mutli-agent systems, survey and
opportunities. Autonomous Agents and Multi-Agent Systems, 14:117, 2006.

12. Alexander Repenning and Andri Ioannidou. Mobility agents: guiding and tracking
public transportation users. In AVI ’06: Proceedings of the working conference on
Advanced visual interfaces, pages 127–134, New York, NY, USA, 2006. ACM Press.

13. R. Schleiffer. Intelligent agents in traffic and transportation. In Transportation
Research part C: emerging technologies (special issue), volume 10C 5-6, pages 325–
527. Elsevier, 2002.

14. Reid G. Smith. The contract net protocol: High-level communication and control
in a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–
1113, 1980.

15. Marius M. Solomon. Algorithms for the vehicle routing and scheduling with time
window constraints. Operations Research, 15:254–265, 1987.

16. Danny Weyns, Nelis Boucké, and Tom Holvoet. Gradient field-based task as-
signment in an agv transportation system. In AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous agents and multiagent systems,
pages 842–849, New York, NY, USA, 2006. ACM.

17. Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques
Ferber. Environments for multiagent systems, state-of-the-art and research chal-
lenges. Lecture Notes in Computer Science Series, 3374:2–52, 2005.

18. Mahdi Zargayouna. Modèle et langage de coordination pour les systèmes multi-
agents ouverts. Application au problème du transport à la demande. PhD disserta-
tion, University of Paris-Dauphine, Paris (France), 2007. In french.

19. Mahdi Zargayouna, Julien Saunier Trassy, and Flavien Balbo. Property based co-
ordination. In AIMSA’06: Artificial Intelligence: Methodology, Systems, Applica-
tions, volume 4183 of Lecture Notes in Artificial Intelligence, pages 3–12. Springer-
Verlag, 2006.


